Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
J Neurosci ; 31(12): 4709-13, 2011 Mar 23.
Article in English | MEDLINE | ID: mdl-21430169

ABSTRACT

Synaptic activity is followed within seconds by a local surge in lactate concentration, a phenomenon that underlies functional magnetic resonance imaging and whose causal mechanisms are unclear, partly because of the limited spatiotemporal resolution of standard measurement techniques. Using a novel Förster resonance energy transfer-based method that allows real-time measurement of the glycolytic rate in single cells, we have studied mouse astrocytes in search for the mechanisms responsible for the lactate surge. Consistent with previous measurements with isotopic 2-deoxyglucose, glutamate was observed to stimulate glycolysis in cultured astrocytes, but the response appeared only after a lag period of several minutes. Na(+) overloads elicited by engagement of the Na(+)-glutamate cotransporter with d-aspartate or application of the Na(+) ionophore gramicidin also failed to stimulate glycolysis in the short term. In marked contrast, K(+) stimulated astrocytic glycolysis by fourfold within seconds, an effect that was observed at low millimolar concentrations and was also present in organotypic hippocampal slices. After removal of the agonists, the stimulation by K(+) ended immediately but the stimulation by glutamate persisted unabated for >20 min. Both stimulations required an active Na(+)/K(+) ATPase pump. By showing that small rises in extracellular K(+) mediate short-term, reversible modulation of astrocytic glycolysis and that glutamate plays a long-term effect and leaves a metabolic trace, these results support the view that astrocytes contribute to the lactate surge that accompanies synaptic activity and underscore the role of these cells in neurometabolic and neurovascular coupling.


Subject(s)
Astrocytes/physiology , Glutamic Acid/pharmacology , Glycolysis/physiology , Potassium/pharmacology , Animals , Cells, Cultured , Fluorescence Resonance Energy Transfer , In Vitro Techniques , Indicators and Reagents , Kinetics , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Sodium-Potassium-Exchanging ATPase/metabolism , Stimulation, Chemical
2.
Article in English | MEDLINE | ID: mdl-20890447

ABSTRACT

The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K(+), supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

3.
J Neurochem ; 109 Suppl 1: 94-100, 2009 May.
Article in English | MEDLINE | ID: mdl-19393014

ABSTRACT

In recent years, the use of fluorescent glucose analogs has allowed the study of rapid transport modulation in heterogeneous cell cultures and complex tissues. However, the kinetic behavior of these tracers is not conventional. For instance, the fluorescent glucose analog 6-NBDG permeates the cell 50-100 times slower than glucose but the uptake of 6-NBDG is almost insensitive to glucose, an observation that casts doubts as to the specificity of the uptake pathway. To investigate this apparent anomaly in cultured astrocytes, which are rich in the glucose transporter GLUT1, we first estimated the kinetic parameters of 6-NBDG uptake, which were then incorporated into the kinetic model of GLUT1. The main outcome of the analysis was that 6-NBDG binds to GLUT1 with 300 times higher affinity than glucose, which explains why its uptake is not efficiently displaced by glucose. The high binding affinity of 6-NBDG also explains why cytochalasin B is less effective at inhibiting 6-NBDG uptake than at inhibiting glucose uptake. We conclude that 6-NBDG, used at low concentrations, permeates into astrocytes chiefly through GLUT1, and advise that the exofacial GLUT1 inhibitor 4,6-ethylidine-D-glucose be used, instead of glucose, as the tool of choice to confirm the specificity of 6-NBDG uptake.


Subject(s)
4-Chloro-7-nitrobenzofurazan/analogs & derivatives , Astrocytes/metabolism , Glucosamine/analogs & derivatives , Glucose Transporter Type 1/metabolism , Animals , Astrocytes/drug effects , Cells, Cultured , Cytochalasin B/pharmacology , Diffusion , Glucose/metabolism , Kinetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Models, Statistical , Reproducibility of Results , Substrate Specificity
4.
Glia ; 55(12): 1222-1237, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17659523

ABSTRACT

While glucose is constantly being "pulled" into the brain by hexokinase, its flux across the blood brain barrier (BBB) is allowed by facilitative carriers of the GLUT family. Starting from the microscopic properties of GLUT carriers, and within the constraints imposed by the available experimental data, chiefly NMR spectroscopy, we have generated a numerical model that reveals several hidden features of glucose transport and metabolism in the brain. The half-saturation constant of glucose uptake into the brain (K(t)) is close to 8 mM. GLUT carriers at the BBB are symmetric, show accelerated-exchange, and a K(m) of zero-trans flux (K(zt)) close to 5 mM, determining a ratio of 3.6 between maximum transport rate and net glucose flux (T(max)/CMR(glc)). In spite of the low transporter occupancy, the model shows that for a stimulated hexokinase to pull more glucose into the brain, the number or activity of GLUT carriers must also increase, particularly at the BBB. The endothelium is therefore predicted to be a key modulated element for the fast control of energy metabolism. In addition, the simulations help to explain why mild hypoglycemia may be asymptomatic and reveal that [glucose](brain) (as measured by NMR) should be much more sensitive than glucose flux (as measured by PET) as an indicator of GLUT1 deficiency. In summary, available data from various sources has been integrated in a predictive model based on the microscopic properties of GLUT carriers.


Subject(s)
Glucose/metabolism , Muscle, Smooth, Vascular/metabolism , Neuroglia/metabolism , Animals , Biological Transport, Active/physiology , Blood Glucose/metabolism , Brain Chemistry/physiology , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transporter Type 1/metabolism , Humans , Hypoglycemia/metabolism , Models, Neurological , Muscle, Smooth, Vascular/cytology
5.
Trends Neurosci ; 28(3): 117-9, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15749163

ABSTRACT

Neuronal activity is fueled by glucose metabolism, a phenomenon exploited in basic research and clinical diagnosis using fluorodeoxyglucose positron emission tomography (FDG-PET). According to the current view, glucose transport into the brain is not rate-limiting; thus, it cannot exert control over metabolism. This article challenges such a view by showing that basal transport hovers near its maximum, making metabolic activation unable to increase flux on its own. In the light of recent evidence on the identity of the cell type that preferentially breaks down glucose, we suggest that FDG-PET reports the synergistic activation of glucose transport and metabolism in astrocytes, rather than in neurons.


Subject(s)
Biological Transport/physiology , Brain/metabolism , Glucose/metabolism , Positron-Emission Tomography , Animals , Brain/diagnostic imaging , Fluorodeoxyglucose F18/metabolism , Neurons/metabolism
6.
Biol Res ; 35(2): 209-14, 2002.
Article in English | MEDLINE | ID: mdl-12415738

ABSTRACT

Cell death is preceded by severe disruption of inorganic ion homeostasis. Seconds to minutes after an injury, calcium, protons, sodium, potassium and chloride are exchanged between the cell and its environment. Simultaneously, ions are shifted between membrane compartments inside the cell, whereby mitochondria and endoplasmic reticulum play a crucial role. Depending of the type and severity of injury, two mutually exclusive metastable states can be reached, which predict the final outcome. Cells characterized by large increases in cytosolic [Ca2+], [Na+] and [Mg2+] swell and die by necrosis; alternatively, cells characterized by high [H+] and low [K+], with normal [Na+] and normal to moderate [Ca2+] increases die by apoptosis. The levels of these ions represent central determinants in signaling events leading to cell death. Their movements are explained mechanistically by specific modulation of membrane transport proteins including channels, pumps and carriers.


Subject(s)
Cell Death/physiology , Ion Channels/metabolism , Animals , Calcium/metabolism , Humans , Ion Channels/physiology , Ion Transport , Magnesium/metabolism , Potassium/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Sodium/metabolism
7.
Biol. Res ; 35(2): 209-214, 2002.
Article in English | LILACS | ID: lil-323343

ABSTRACT

Cell death is preceded by severe disruption of inorganic ion homeostasis. Seconds to minutes after an injury, calcium, protons, sodium, potassium and chloride are exchanged between the cell and its environment. Simultaneously, ions are shifted between membrane compartments inside the cell, whereby mitochondria and endoplasmic reticulum play a crucial role. Depending of the type and severity of injury, two mutually exclusive metastable states can be reached, which predict the final outcome. Cells characterized by large increases in cytosolic [Ca2+], [Na+] and [Mg2+] swell and die by necrosis; alternatively, cells characterized by high [H+] and low [K+], with normal [Na+] and normal to moderate [Ca2+] increases die by apoptosis. The levels of these ions represent central determinants in signaling events leading to cell death. Their movements are explained mechanistically by specific modulation of membrane transport proteins including channels, pumps and carriers


Subject(s)
Humans , Animals , Cell Death , Ion Channels , Ion Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...