Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 23(16): 4511-6, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23856049

ABSTRACT

The kinase selectivity and pharmacokinetic optimization of a series of 7-aminofuro[2,3-c]pyridine inhibitors of TAK1 is described. The intersection of insights from molecular modeling, computational prediction of metabolic sites, and in vitro metabolite identification studies resulted in a simple and unique solution to both of these problems. These efforts culminated in the discovery of compound 13a, a potent, relatively selective inhibitor of TAK1 with good pharmacokinetic properties in mice, which was active in an in vivo model of ovarian cancer.


Subject(s)
Enzyme Inhibitors , MAP Kinase Kinase Kinases/antagonists & inhibitors , Pyridines , Amines/chemical synthesis , Amines/chemistry , Amines/pharmacology , Animals , Crystallography, X-Ray , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Furans/chemical synthesis , Furans/chemistry , Furans/pharmacology , Humans , Inhibitory Concentration 50 , MAP Kinase Kinase Kinases/metabolism , Mice , Molecular Structure , Neoplasms/drug therapy , Phosphotransferases/chemistry , Phosphotransferases/metabolism , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Pyridines/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
2.
Bioorg Med Chem Lett ; 23(16): 4517-22, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23850198

ABSTRACT

The discovery and potency optimization of a series of 7-aminofuro[2,3-c]pyridine inhibitors of TAK1 is described. Micromolar hits taken from high-throughput screening were optimized for biochemical and cellular mechanistic potency to ~10nM, as exemplified by compound 12az. Application of structure-based drug design aided by co-crystal structures of TAK1 with inhibitors significantly shortened the number of iterations required for the optimization.


Subject(s)
MAP Kinase Kinase Kinases/antagonists & inhibitors , Pyridines , Amines/chemical synthesis , Amines/chemistry , Amines/pharmacology , Animals , Crystallography, X-Ray , Drug Design , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Furans/chemical synthesis , Furans/chemistry , Furans/pharmacology , Humans , Inhibitory Concentration 50 , Mice , Molecular Structure , Neoplasms/drug therapy , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Pyridines/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
Bioorg Med Chem Lett ; 23(15): 4381-7, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23773865

ABSTRACT

A series of novel 6-aminofuro[3,2-c]pyridines as kinase inhibitors is described, most notably, OSI-296 (6). We discuss our exploration of structure-activity relationships and optimization leading to OSI-296 and disclose its pharmacological activity against cMET and RON in cellular assays. OSI-296 is a potent and selective inhibitor of cMET and RON kinases that shows in vivo efficacy in tumor xenografts models upon oral dosing and is well tolerated.


Subject(s)
Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyridines/chemistry , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Female , Half-Life , Humans , Hydrogen-Ion Concentration , Mice , Mice, Nude , Mutation , Neoplasms/drug therapy , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Pyridines/pharmacokinetics , Pyridines/therapeutic use , Rats , Rats, Sprague-Dawley , Receptor Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Transplantation, Heterologous
4.
Bioorg Med Chem Lett ; 23(4): 979-84, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23317569

ABSTRACT

This Letter describes the medicinal chemistry effort towards a series of novel imidazo[1,5-a]pyrazine derived inhibitors of ACK1. Virtual screening led to the discovery of the initial hit, and subsequent exploration of structure-activity relationships and optimization of drug metabolism and pharmacokinetic properties led to the identification of potent, selective and orally bioavailable ACK1 inhibitors.


Subject(s)
Imidazoles/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazines/chemistry , Administration, Oral , Animals , Humans , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Mice , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Structure-Activity Relationship
5.
ACS Med Chem Lett ; 4(7): 627-31, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-24900721

ABSTRACT

This letter describes a series of small molecule inhibitors of IGF-1R with unique time-dependent binding kinetics and slow off-rates. Structure-activity and structure-kinetic relationships were elucidated and guided further optimizations within the series, culminating in compound 2. With an IGF-1R dissociative half-life (t 1/2) of >100 h, compound 2 demonstrated significant and extended PD effects in conjunction with tumor growth inhibition in xenograft models at a remarkably low and intermittent dose, which correlated with the observed in vitro slow off-rate properties.

6.
Mol Cancer Ther ; 10(8): 1394-406, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21673091

ABSTRACT

The phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway is frequently activated in human cancers, and mTOR is a clinically validated target. mTOR forms two distinct multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, metabolism, proliferation, and survival. Rapamycin and its analogues partially inhibit mTOR through allosteric binding to mTORC1, but not mTORC2, and have shown clinical utility in certain cancers. Here, we report the preclinical characterization of OSI-027, a selective and potent dual inhibitor of mTORC1 and mTORC2 with biochemical IC(50) values of 22 nmol/L and 65 nmol/L, respectively. OSI-027 shows more than 100-fold selectivity for mTOR relative to PI3Kα, PI3Kß, PI3Kγ, and DNA-PK. OSI-027 inhibits phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1 as well as the mTORC2 substrate AKT in diverse cancer models in vitro and in vivo. OSI-027 and OXA-01 (close analogue of OSI-027) potently inhibit proliferation of several rapamycin-sensitive and -insensitive nonengineered and engineered cancer cell lines and also, induce cell death in tumor cell lines with activated PI3K-AKT signaling. OSI-027 shows concentration-dependent pharmacodynamic effects on phosphorylation of 4E-BP1 and AKT in tumor tissue with resulting tumor growth inhibition. OSI-027 shows robust antitumor activity in several different human xenograft models representing various histologies. Furthermore, in COLO 205 and GEO colon cancer xenograft models, OSI-027 shows superior efficacy compared with rapamycin. Our results further support the important role of mTOR as a driver of tumor growth and establish OSI-027 as a potent anticancer agent. OSI-027 is currently in phase I clinical trials in cancer patients.


Subject(s)
Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Proteins/antagonists & inhibitors , Sirolimus/pharmacology , Transcription Factors/antagonists & inhibitors , Triazines/pharmacology , Animals , Apoptosis/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Female , HeLa Cells , Humans , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Nude , Multiprotein Complexes , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases , Triazines/chemistry , Triazines/pharmacokinetics , Xenograft Model Antitumor Assays
7.
Bioorg Med Chem Lett ; 21(7): 2092-7, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21353551

ABSTRACT

The discovery and optimization of a series of imidazo[1,5-a]pyrazine inhibitors of mTOR is described. HTS hits were optimized for potency, selectivity and metabolic stability to provide the orally bioavailable proof of concept compound 4c that demonstrated target inhibition in vivo and concomitant inhibition of tumor growth in an MDA-MB-231 xenograft model.


Subject(s)
Imidazoles/pharmacology , Proteins/antagonists & inhibitors , Pyrazines/pharmacology , Transcription Factors/antagonists & inhibitors , Administration, Oral , Cell Line, Tumor , Humans , Imidazoles/administration & dosage , Mechanistic Target of Rapamycin Complex 1 , Models, Molecular , Multiprotein Complexes , Pyrazines/administration & dosage , TOR Serine-Threonine Kinases , Xenograft Model Antitumor Assays
8.
Bioorg Med Chem Lett ; 21(4): 1176-80, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21251824

ABSTRACT

Preclinical and emerging clinical evidence suggests that inhibiting insulin-like growth factor 1 receptor (IGF-1R) signaling may offer a promising therapeutic strategy for the treatment of several types of cancer. This Letter describes the medicinal chemistry effort towards a series of 8-amino-imidazo[1,5-a]pyrazine derived inhibitors of IGF-1R which features a substituted quinoline moiety at the C1 position and a cyclohexyl linking moiety at the C3 position. Lead optimization efforts which included the optimization of structure-activity relationships and drug metabolism and pharmacokinetic properties led to the identification of compound 9m, a potent, selective and orally bioavailable inhibitor of IGF-1R with in vivo efficacy in an IGF-driven mouse xenograft model.


Subject(s)
Antineoplastic Agents/chemistry , Benzimidazoles/chemistry , Imidazoles/chemistry , Protein Kinase Inhibitors/chemistry , Pyrazines/chemistry , Receptor, IGF Type 1/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Benzimidazoles/pharmacokinetics , Benzimidazoles/therapeutic use , Mice , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Pyrazines/pharmacokinetics , Pyrazines/therapeutic use , Receptor, IGF Type 1/metabolism , Structure-Activity Relationship , Transplantation, Heterologous
9.
ACS Med Chem Lett ; 1(9): 510-5, 2010 Dec 09.
Article in English | MEDLINE | ID: mdl-24900240

ABSTRACT

This report describes the investigation of a series of 5,7-disubstituted imidazo[5,1-f][1,2,4]triazine inhibitors of insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (IR). Structure-activity relationship exploration and optimization leading to the identification, characterization, and pharmacological activity of compound 9b, a potent, selective, well-tolerated, and orally bioavailable dual inhibitor of IGF-1R and IR with in vivo efficacy in tumor xenograft models, is discussed.

11.
Cancer Res ; 66(2): 1015-24, 2006 Jan 15.
Article in English | MEDLINE | ID: mdl-16424037

ABSTRACT

OSI-930 is a novel inhibitor of the receptor tyrosine kinases Kit and kinase insert domain receptor (KDR), which is currently being evaluated in clinical studies. OSI-930 selectively inhibits Kit and KDR with similar potency in intact cells and also inhibits these targets in vivo following oral dosing. We have investigated the relationships between the potency observed in cell-based assays in vitro, the plasma exposure levels achieved following oral dosing, the time course of target inhibition in vivo, and antitumor activity of OSI-930 in tumor xenograft models. In the mutant Kit-expressing HMC-1 xenograft model, prolonged inhibition of Kit was achieved at oral doses between 10 and 50 mg/kg and this dose range was associated with antitumor activity. Similarly, prolonged inhibition of wild-type Kit in the NCI-H526 xenograft model was observed at oral doses of 100 to 200 mg/kg, which was the dose level associated with significant antitumor activity in this model as well as in the majority of other xenograft models tested. The data suggest that antitumor activity of OSI-930 in mouse xenograft models is observed at dose levels that maintain a significant level of inhibition of the molecular targets of OSI-930 for a prolonged period. Furthermore, pharmacokinetic evaluation of the plasma exposure levels of OSI-930 at these effective dose levels provides an estimate of the target plasma concentrations that may be required to achieve prolonged inhibition of Kit and KDR in humans and which would therefore be expected to yield a therapeutic benefit in future clinical evaluations of OSI-930.


Subject(s)
Leukemia, Mast-Cell/therapy , Proto-Oncogene Proteins c-kit/physiology , Quinolines/pharmacology , Thiophenes/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Administration, Oral , Animals , Female , Humans , Leukemia, Mast-Cell/pathology , Mice , Mice, Nude , Quinolines/administration & dosage , Quinolines/pharmacokinetics , Thiophenes/administration & dosage , Thiophenes/pharmacokinetics , Transplantation, Heterologous , Vascular Endothelial Growth Factor Receptor-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...