Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 07 29.
Article in English | MEDLINE | ID: mdl-34323690

ABSTRACT

A cornerstone of theoretical neuroscience is the circuit model: a system of equations that captures a hypothesized neural mechanism. Such models are valuable when they give rise to an experimentally observed phenomenon -- whether behavioral or a pattern of neural activity -- and thus can offer insights into neural computation. The operation of these circuits, like all models, critically depends on the choice of model parameters. A key step is then to identify the model parameters consistent with observed phenomena: to solve the inverse problem. In this work, we present a novel technique, emergent property inference (EPI), that brings the modern probabilistic modeling toolkit to theoretical neuroscience. When theorizing circuit models, theoreticians predominantly focus on reproducing computational properties rather than a particular dataset. Our method uses deep neural networks to learn parameter distributions with these computational properties. This methodology is introduced through a motivational example of parameter inference in the stomatogastric ganglion. EPI is then shown to allow precise control over the behavior of inferred parameters and to scale in parameter dimension better than alternative techniques. In the remainder of this work, we present novel theoretical findings in models of primary visual cortex and superior colliculus, which were gained through the examination of complex parametric structure captured by EPI. Beyond its scientific contribution, this work illustrates the variety of analyses possible once deep learning is harnessed towards solving theoretical inverse problems.


Subject(s)
Computational Biology/methods , Models, Neurological , Neural Networks, Computer , Visual Cortex/physiology , Models, Statistical
2.
Neuron ; 107(4): 745-758.e6, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32516573

ABSTRACT

The supplementary motor area (SMA) is believed to contribute to higher order aspects of motor control. We considered a key higher order role: tracking progress throughout an action. We propose that doing so requires population activity to display low "trajectory divergence": situations with different future motor outputs should be distinct, even when present motor output is identical. We examined neural activity in SMA and primary motor cortex (M1) as monkeys cycled various distances through a virtual environment. SMA exhibited multiple response features that were absent in M1. At the single-neuron level, these included ramping firing rates and cycle-specific responses. At the population level, they included a helical population-trajectory geometry with shifts in the occupied subspace as movement unfolded. These diverse features all served to reduce trajectory divergence, which was much lower in SMA versus M1. Analogous population-trajectory geometry, also with low divergence, naturally arose in networks trained to internally guide multi-cycle movement.


Subject(s)
Action Potentials/physiology , Motor Cortex/physiology , Neurons/physiology , Animals , Brain Mapping , Macaca mulatta , Neural Pathways/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , User-Computer Interface
3.
Neuron ; 97(4): 953-966.e8, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29398358

ABSTRACT

Primate motor cortex projects to spinal interneurons and motoneurons, suggesting that motor cortex activity may be dominated by muscle-like commands. Observations during reaching lend support to this view, but evidence remains ambiguous and much debated. To provide a different perspective, we employed a novel behavioral paradigm that facilitates comparison between time-evolving neural and muscle activity. We found that single motor cortex neurons displayed many muscle-like properties, but the structure of population activity was not muscle-like. Unlike muscle activity, neural activity was structured to avoid "tangling": moments where similar activity patterns led to dissimilar future patterns. Avoidance of tangling was present across tasks and species. Network models revealed a potential reason for this consistent feature: low tangling confers noise robustness. Finally, we were able to predict motor cortex activity from muscle activity by leveraging the hypothesis that muscle-like commands are embedded in additional structure that yields low tangling.


Subject(s)
Models, Neurological , Motor Activity , Motor Cortex/physiology , Motor Neurons/physiology , Muscle, Skeletal/physiology , Animals , Macaca mulatta , Male , Mice , Neural Pathways/physiology
4.
PLoS One ; 12(8): e0181773, 2017.
Article in English | MEDLINE | ID: mdl-28817581

ABSTRACT

Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.


Subject(s)
Excitatory Postsynaptic Potentials , Inhibitory Postsynaptic Potentials , Neurons/physiology , Algorithms , Animals , Cluster Analysis , Macaca , Models, Neurological , Visual Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...