Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
NMR Biomed ; 35(5): e4656, 2022 05.
Article in English | MEDLINE | ID: mdl-34962689

ABSTRACT

In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Temperature
2.
NMR Biomed ; 34(7): e4515, 2021 07.
Article in English | MEDLINE | ID: mdl-33942938

ABSTRACT

The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit elements. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual observation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the deviation from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, especially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homogeneous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Radio Waves , Computer Simulation , Humans , Male , Models, Biological
3.
MAGMA ; 34(1): 153-163, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32964299

ABSTRACT

OBJECTIVE: In local SAR compression algorithms, the overestimation is generally not linearly dependent on actual local SAR. This can lead to large relative overestimation at low actual SAR values, unnecessarily constraining transmit array performance. METHOD: Two strategies are proposed to reduce maximum relative overestimation for a given number of VOPs. The first strategy uses an overestimation matrix that roughly approximates actual local SAR; the second strategy uses a small set of pre-calculated VOPs as the overestimation term for the compression. RESULT: Comparison with a previous method shows that for a given maximum relative overestimation the number of VOPs can be reduced by around 20% at the cost of a higher absolute overestimation at high actual local SAR values. CONCLUSION: The proposed strategies outperform a previously published strategy and can improve the SAR compression where maximum relative overestimation constrains the performance of parallel transmission.


Subject(s)
Data Compression , Algorithms , Computer Simulation , Magnetic Resonance Imaging , Phantoms, Imaging
4.
J Magn Reson Imaging ; 53(2): 333-346, 2021 02.
Article in English | MEDLINE | ID: mdl-32830900

ABSTRACT

Magnetic resonance imaging and spectroscopy (MRI/MRS) at 7T represents an exciting advance in MR technology, with intriguing possibilities to enhance image spatial, spectral, and contrast resolution. To ensure the safe use of this technology while still harnessing its potential, clinical staff and researchers need to be cognizant of some safety concerns arising from the increased magnetic field strength and higher Larmor frequency. The higher static magnetic fields give rise to enhanced transient bioeffects and an increased risk of adverse incidents related to electrically conductive implants. Many technical challenges remain and the continuing rapid pace of development of 7T MRI/MRS is likely to present further challenges to ensuring safety of this technology in the years ahead. The recent regulatory clearance for clinical diagnostic imaging at 7T will likely increase the installed base of 7T systems, particularly in hospital environments with little prior ultrahigh-field MR experience. Informed risk/benefit analyses will be required, particularly where implant manufacturer-published 7T safety guidelines for implants are unavailable. On behalf of the International Society for Magnetic Resonance in Medicine, the aim of this article is to provide a reference document to assist institutions developing local institutional policies and procedures that are specific to the safe operation of 7T MRI/MRS. Details of current 7T technology and the physics underpinning its functionality are reviewed, with the aim of supporting efforts to expand the use of 7T MRI/MRS in both research and clinical environments. Current gaps in knowledge are also identified, where additional research and development are required. Level of Evidence 5 Technical Efficacy 2 J. MAGN. RESON. IMAGING 2021;53:333-346.


Subject(s)
Magnetic Fields , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Spectroscopy , Physics
5.
PLoS One ; 14(9): e0222452, 2019.
Article in English | MEDLINE | ID: mdl-31513637

ABSTRACT

PURPOSE: A 32-channel parallel transmit (pTx) add-on for 7 Tesla whole-body imaging is presented. First results are shown for phantom and in-vivo imaging. METHODS: The add-on system consists of a large number of hardware components, including modulators, amplifiers, SAR supervision, peripheral devices, a control computer, and an integrated 32-channel transmit/receive body array. B1+ maps in a phantom as well as B1+ maps and structural images in large volunteers are acquired to demonstrate the functionality of the system. EM simulations are used to ensure safe operation. RESULTS: Good agreement between simulation and experiment is shown. Phantom and in-vivo acquisitions show a field of view of up to 50 cm in z-direction. Selective excitation with 100 kHz sampling rate is possible. The add-on system does not affect the quality of the original single-channel system. CONCLUSION: The presented 32-channel parallel transmit system shows promising performance for ultra-high field whole-body imaging.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Equipment Design , Humans , Phantoms, Imaging , Signal-To-Noise Ratio
6.
Magn Reson Med ; 82(5): 1859-1875, 2019 11.
Article in English | MEDLINE | ID: mdl-31199013

ABSTRACT

PURPOSE: To evaluate radiofrequency (RF) induced tissue heating around aneurysm clips during a 7T head MR examination and to determine the decoupling distance between multiple implanted clips. METHODS: A total of 120 RF exposure scenarios of clinical relevance were studied using specific absorption rate and temperature simulations. Variations between scenarios included 2 clips (18.8 and 51.5 mm length), 2 MR-operating modes, 2 head models, and 3 thermoregulation models. Furthermore, a conservative approach was developed to allow for safe scans of patients with aneurysm clips even if detailed information on the implanted clip is unknown. A dedicated simulation-based approach was applied to determine the decoupling distance between multiple implanted clips. RESULTS: For all 60 clinical scenarios with the 18.8-mm-long clip, the absolute tissue temperature remained below regulatory limits. For 15 of 60 scenarios with the 51.5-mm-long clip, limits were slightly exceeded (less than 1°C). The conservative approach led to a maximum time-averaged input power of the RF coil of 3.3W. The corresponding B1+ is 1.32 µT. A decoupling distance of 35 mm allows the aneurysm clips to be treated as uncoupled from one other. CONCLUSION: Safe scanning conditions with respect to RF-induced heating can be applied for single or decoupled aneurysm clips in a 7T ultra-high field MRI setting. Multiple aneurysm clips separated by less than 35 mm need further investigations.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Surgical Instruments/adverse effects , Equipment Safety , Hot Temperature , Humans , Intracranial Aneurysm/surgery , Phantoms, Imaging , Prosthesis Design , Radio Waves
7.
Magn Reson Med ; 82(2): 796-810, 2019 08.
Article in English | MEDLINE | ID: mdl-30924181

ABSTRACT

PURPOSE: A 16-channel receive (16Rx) radiofrequency (RF) array for 7T ultra-high field body MR imaging is presented. The coil is evaluated in conjunction with a 16-channel transmit/receive (16TxRx) coil and additionally with a 32-channel transmit/receive (32TxRx) remote body coil for RF transmit and serving as receive references. METHODS: The 16Rx array consists of 16 octagonal overlapping loops connected to custom-built detuning boards with preamplifiers. Performance metrics like noise correlation, g-factors, and signal-to-noise ratio gain were compared between 4 different RF coil configurations. In vivo body imaging was performed in volunteers using radiofrequency shimming, time interleaved acquisition of modes (TIAMO), and 2D spatially selective excitation using parallel transmit (pTx) in the spine. RESULTS: Lower g-factors were obtained when using the 16Rx coil in addition to the 16TxRx array coil configuration versus the 16TxRx array alone. Distinct signal-to-noise ratio gain using the 16Rx coil could be demonstrated in the spine region both for a comparison with the 16TxRx coil (>50% gain) in vivo and the 32TxRx coil (>240% gain) in a phantom. The 16Rx coil was successfully applied to improve anatomical imaging in the abdomen and 2D spatially selective excitation in the spine of volunteers. CONCLUSION: The novel 16-channel Rx-array as an add-on to multichannel TxRx RF coil configurations provides increased signal-to-noise ratio, lower g-factors, and thus improves 7T ultra-high field body MR imaging.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Spine/diagnostic imaging , Adult , Equipment Design , Humans , Male , Phantoms, Imaging
9.
Neuroimage ; 168: 33-58, 2018 03.
Article in English | MEDLINE | ID: mdl-28336426

ABSTRACT

At ultra-high fields, the assessment of radiofrequency (RF) safety presents several new challenges compared to low-field systems. Multi-channel RF transmit coils in combination with parallel transmit techniques produce time-dependent and spatially varying power loss densities in the tissue. Further, in ultra-high-field systems, localized field effects can be more pronounced due to a transition from the quasi stationary to the electromagnetic field regime. Consequently, local information on the RF field is required for reliable RF safety assessment as well as for monitoring of RF exposure during MR examinations. Numerical RF and thermal simulations for realistic exposure scenarios with anatomical body models are currently the only practical way to obtain the requisite local information on magnetic and electric field distributions as well as tissue temperature. In this article, safety regulations and the fundamental characteristics of RF field distributions in ultra-high-field systems are reviewed. Numerical methods for computation of RF fields as well as typical requirements for the analysis of realistic multi-channel RF exposure scenarios including anatomical body models are highlighted. In recent years, computation of the local tissue temperature has become of increasing interest, since a more accurate safety assessment is expected because temperature is directly related to tissue damage. Regarding thermal simulation, bio-heat transfer models and approaches for taking into account the physiological response of the human body to RF exposure are discussed. In addition, suitable methods are presented to validate calculated RF and thermal results with measurements. Finally, the concept of generalized simulation-based specific absorption rate (SAR) matrix models is discussed. These models can be incorporated into local SAR monitoring in multi-channel MR systems and allow the design of RF pulses under constraints for local SAR.


Subject(s)
Absorption, Radiation , Electromagnetic Radiation , Hot Temperature , Magnetic Resonance Imaging/standards , Models, Anatomic , Models, Theoretical , Radio Waves , Safety/standards , Absorption, Radiation/physiology , Adult , Female , Hot Temperature/adverse effects , Humans , Magnetic Resonance Imaging/adverse effects , Male , Radio Waves/adverse effects
10.
Magn Reson Med ; 79(5): 2652-2664, 2018 05.
Article in English | MEDLINE | ID: mdl-28994132

ABSTRACT

PURPOSE: Current methods for mitigation of transmit field B1+ inhomogeneities at ultrahigh field (UHF) MRI by multi-channel radiofrequency (RF) shimming rely on accurate B1+ mapping. This can be time consuming when many RF channels have to be mapped for in vivo body MRI, where the B1 maps should ideally be acquired within a single breath-hold. Therefore, a new B1+ mapping technique (B1TIAMO) is proposed. METHODS: The performance of this technique is validated against an established method (DREAM) in phantom measurements for a cylindrical head phantom with an 8-channel transmit/receive (Tx/Rx) array. Furthermore, measurements for a 32-channel Tx/Rx remote array are conducted in a large body phantom and the |B1+| map reliability is validated against simulations of the transmit RF field distribution. Finally, in vivo results of this new mapping technique for human abdomen are presented. RESULTS: For the head phantom (8-channel Tx/Rx coil), the single |B1+| comparison between B1 TIAMO, the direct DREAM measurements, and simulation data showed good agreement with 10-19% difference. For the large body phantom (32-channel Tx/Rx coil), B1TIAMO matched the RF field simulations well. CONCLUSION: The results demonstrate the potential to acquire 32 accurate single-channel B1+ maps for large field-of-view body imaging within only a single breath-hold of 16 s at 7T UHF MRI. Magn Reson Med 79:2652-2664, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Equipment Design , Head/diagnostic imaging , Humans , Kidney/diagnostic imaging , Male , Phantoms, Imaging , Reproducibility of Results , Whole Body Imaging
11.
Magn Reson Med ; 79(2): 1116-1126, 2018 02.
Article in English | MEDLINE | ID: mdl-28394080

ABSTRACT

PURPOSE: In this work, 22 configurations for remote radiofrequency (RF) coil arrays consisting of different transmit element designs for 7 Tesla (T) ultrahigh-field MRI are compared by numerical simulations. METHODS: Investigated transmit RF element types are rectangular loops, micro striplines, micro striplines with meanders, 250-mm shielded dipoles with meanders, and lambda over two dipoles with and without shield. These elements are combined in four different configurations of circumferential RF body arrays with four or eight transmit elements each. Comparisons included coupling behavior, degrees of freedom offered by the individual transmit patterns, and metrics like power and specific absorption rate efficiency. RESULTS: Coupling between neighboring RF elements is elevated (up to -7 dB) for all arrays with eight elements, whereas it is below -25 dB for arrays with only four elements. The cumulative sum of singular values points out highest degrees of freedom for the central transversal, reduced values in the central coronal, and minimum values in the sagittal slice. Concerning power and SAR efficiency, eight lambda over two dipoles are most advantageous. CONCLUSIONS: Among the investigated remote arrays and parameters, a combination of eight dipoles appears to be most favorable for potential use in 7T body MRI. Magn Reson Med 79:1116-1126, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Computer Simulation , Equipment Design , Humans , Radio Waves
12.
Magn Reson Med ; 79(1): 568-581, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28266079

ABSTRACT

PURPOSE: To examine radiofrequency-induced tissue heating around intracranial aneurysm clips during a 7 Tesla (T) head MR examination. METHODS: Radiofrequency (RF), temperature simulations, and RF measurements were employed to investigate the effects of polarization and clip length on the electric field (E-field) and temperature. Heating in body models was studied using both a conservative approach and realistic exposure scenarios. RESULTS: Worst-case orientation was found for clips aligned parallel to the E-field polarization. Absolute tissue temperature remained below International Electrotechnical Commission regulatory limits for 44 of 50 clinical scenarios. No significant effect on heating was determined for clip lengths below 18.8 mm, and worst-case heating was found for clip length 51.5 mm. The conservative approach led to a maximum permissible E-field of 72 V/m corresponding to B1+ of 1.2 µT, and an accepted power of 4.6 W for the considered RF head coil instead of 38.5 W without clip. CONCLUSION: Safe scanning conditions with respect to RF-induced heating can be applied depending on the information about the clip gained during screening interviews. However, force and torque measurements in the MR system shall be conducted to give a final statement on the MR safety of aneurysm clips at 7T. Magn Reson Med 79:568-581, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Hyperthermia, Induced , Intracranial Aneurysm/diagnostic imaging , Magnetic Resonance Imaging , Surgical Instruments , Computer Simulation , Hot Temperature , Humans , Infant , Phantoms, Imaging , Radio Waves , Stress, Mechanical , Torque
13.
Med Phys ; 44(12): 6195-6208, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28976586

ABSTRACT

PURPOSE: In this work, we present an 8-channel transceiver (Tx/Rx) 7-channel receive (Rx) radiofrequency (RF) coil setup for 7 T ultrahigh-field MR imaging of the shoulder. METHODS: A C-shaped 8-channel Tx/Rx coil was combined with an anatomically close-fitting 7-channel Rx-only coil. The safety and performance parameters of this coil setup were evaluated on the bench and in phantom experiments. The 7 T MR imaging performance of the shoulder RF coil setup was evaluated in in vivo measurements using a 3D DESS, a 2D PD-weighted TSE sequence, and safety supervision based on virtual observation points. RESULTS: Distinct SNR gain and acceleration capabilities provided by the additional 7-channel Rx-only coil were demonstrated in phantom and in vivo measurements. The power efficiency indicated good performance of each channel and a maximum B1+ of 19 µT if the hardware RF power limits of the MR system were exploited. MR imaging of the shoulder was demonstrated with clinically excellent image quality and submillimeter spatial resolution. CONCLUSIONS: The presented 8-channel transceiver 7-channel receive RF coil setup was successfully applied for in vivo 7 T MRI of the shoulder providing a clear SNR gain vs the transceiver array without the additional receive array. Homogeneous images across the shoulder region were obtained using 8-channel subject-specific phase-only RF shimming.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Radio Waves , Shoulder/diagnostic imaging , Signal-To-Noise Ratio , Humans , Phantoms, Imaging
15.
Med Phys ; 44(1): 143-157, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28102957

ABSTRACT

PURPOSE: The purpose of this work was to perform an RF safety evaluation for a bilateral four-channel transmit/receive breast coil and to determine the maximum permissible input power for which RF exposure of the subject stays within recommended limits. The safety evaluation was done based on SAR as well as on temperature simulations. In comparison to SAR, temperature is more directly correlated with tissue damage, which allows a more precise safety assessment. The temperature simulations were performed by applying three different blood perfusion models as well as two different ambient temperatures. The goal was to evaluate whether the SAR and temperature distributions correlate inside the human body and whether SAR or temperature is more conservative with respect to the limits specified by the IEC. METHODS: A simulation model was constructed including coil housing and MR environment. Lumped elements and feed networks were modeled by a network co-simulation. The model was validated by comparison of S-parameters and B1+ maps obtained in an anatomical phantom. Three numerical body models were generated based on 3 Tesla MRI images to conform to the coil housing. SAR calculations were performed and the maximal permissible input power was calculated based on IEC guidelines. Temperature simulations were performed based on the Pennes bioheat equation with the power absorption from the RF simulations as heat source. The blood perfusion was modeled as constant to reflect impaired patients as well as with a linear and exponential temperature-dependent increase to reflect two possible models for healthy subjects. Two ambient temperatures were considered to account for cooling effects from the environment. RESULTS: The simulation model was validated with a mean deviation of 3% between measurement and simulation results. The highest 10 g-averaged SAR was found in lung and muscle tissue on the right side of the upper torso. The maximum permissible input power was calculated to be 17 W. The temperature simulations showed that temperature maximums do not correlate well with the position of the SAR maximums in all considered cases. The body models with an exponential blood perfusion increase did not exceed the temperature limit when an RF power according to the SAR limit was applied; in this case, a higher input power level by up to 73% would be allowed. The models with a constant or linear perfusion exceeded the limit for the local temperature when the local SAR limit was adhered to and would require a decrease in the input power level by up to 62%. CONCLUSION: The maximum permissible input power was determined based on SAR simulations with three newly generated body models and compared with results from temperature simulations. While SAR calculations are state-of-the-art and well defined as they are based on more or less well-known material parameters, temperature simulations depend strongly on additional material, environmental and physiological parameters. The simulations demonstrated that more consideration needs be made by the MR community in defining the parameters for temperature simulations in order to apply temperature limits instead of SAR limits in the context of MR RF safety evaluations.


Subject(s)
Absorption, Radiation , Breast/diagnostic imaging , Breast/radiation effects , Magnetic Resonance Imaging/instrumentation , Radio Waves/adverse effects , Risk Assessment/methods , Temperature , Humans , Models, Biological , Phantoms, Imaging , Radiation Exposure/analysis , Signal-To-Noise Ratio
16.
Magn Reson Med ; 78(2): 805-811, 2017 08.
Article in English | MEDLINE | ID: mdl-27604749

ABSTRACT

PURPOSE: To calculate local specific absorption rate (SAR) correctly, both the amplitude and phase of the signal in each transmit channel have to be known. In this work, we propose a method to derive a conservative upper bound for the local SAR, with a reasonable safety margin without knowledge of the transmit phases of the channels. METHODS: The proposed method uses virtual observation points (VOPs). Correction factors are calculated for each set of VOPs that prevent underestimation of local SAR when the VOPs are applied with the correct amplitudes but fixed phases. RESULTS: The proposed method proved to be superior to the worst-case calculation based on the maximum eigenvalue of the VOPs. The mean overestimation for six coil setups could be reduced, whereas no underestimation of the maximum local SAR occurred. In the best investigated case, the overestimation could be reduced from a factor of 3.3 to a factor of 1.7. CONCLUSION: The upper bound for the local SAR calculated with the proposed method allows a fast estimation of the local SAR based on power measurements in the transmit channels and facilitates SAR monitoring in systems that do not have the capability to monitor transmit phases. Magn Reson Med 78:805-811, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Magnetic Resonance Imaging , Models, Theoretical , Absorption, Radiation , Signal-To-Noise Ratio
17.
MAGMA ; 29(3): 389-98, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27026243

ABSTRACT

OBJECTIVE: This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation. MATERIALS AND METHODS: The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T1-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T2-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading. RESULTS: Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T. CONCLUSION: Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI.


Subject(s)
Bone Plates , Brain/diagnostic imaging , Craniotomy/methods , Magnetic Resonance Imaging , Adult , Artifacts , Brain/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Equipment Design , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Neurosurgery , Postoperative Period , Preoperative Period , Prospective Studies , Skull/diagnostic imaging , Titanium/chemistry , Young Adult
18.
Magn Reson Med ; 75(3): 933-45, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25943445

ABSTRACT

PURPOSE: To assess the feasibility of prostate (1)H MR spectroscopic imaging (MRSI) using low-power spectral-spatial (SPSP) pulses at 7T, exploiting accurate spectral selection and spatial selectivity simultaneously. METHODS: A double spin-echo sequence was equipped with SPSP refocusing pulses with a spectral selectivity of 1 ppm. Three-dimensional prostate (1)H-MRSI at 7T was performed with the SPSP-MRSI sequence using an 8-channel transmit array coil and an endorectal receive coil in three patients with prostate cancer and in one healthy subject. No additional water or lipid suppression pulses were used. RESULTS: Prostate (1)H-MRSI could be obtained well within specific absorption rate (SAR) limits in a clinically feasible time (10 min). Next to the common citrate signals, the prostate spectra exhibited high spermine signals concealing creatine and sometimes also choline. Residual lipid signals were observed at the edges of the prostate because of limitations in spectral and spatial selectivity. CONCLUSION: It is possible to perform prostate (1)H-MRSI at 7T with a SPSP-MRSI sequence while using separate transmit and receive coils. This low-SAR MRSI concept provides the opportunity to increase spatial resolution of MRSI within reasonable scan times.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Spectroscopy/methods , Adult , Aged , Amines/chemistry , Citric Acid/chemistry , Humans , Male , Phantoms, Imaging , Prostate/chemistry , Prostate/metabolism , Prostate/physiology , Signal Processing, Computer-Assisted
19.
NMR Biomed ; 28(11): 1570-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26492089

ABSTRACT

The design and construction of a dedicated RF coil setup for human brain imaging ((1)H) and spectroscopy ((31)P) at ultra-high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for (1)H (297.2 MHz) and (31)P (120.3 MHz). It consists of an eight-channel (1)H transmit-receive head coil with multi-transmit capabilities, and an insertable, actively detunable (31)P birdcage (transmit-receive and transmit only), which can be combined with a seven-channel receive-only (31)P array. The setup enables anatomical imaging and (31)P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of (31)P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B1-shimmed low-power irradiation of water protons. Together, these features enable acquisition of (31)P MRSI at high spatial resolutions (3.0 cm(3) voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min).


Subject(s)
Image Enhancement/instrumentation , Magnetic Resonance Imaging/instrumentation , Occipital Lobe/metabolism , Phosphorus Compounds/metabolism , Proton Magnetic Resonance Spectroscopy/instrumentation , Proton Magnetic Resonance Spectroscopy/methods , Adult , Equipment Design , Equipment Failure Analysis , Humans , Magnetics/instrumentation , Male , Molecular Imaging/instrumentation , Occipital Lobe/anatomy & histology , Phosphorus/pharmacokinetics , Radio Waves , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution , Transducers
20.
MAGMA ; 28(6): 577-90, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26410044

ABSTRACT

OBJECT: Over the last decade, the number of clinical MRI studies at 7 T has increased dramatically. Since only limited information about the safety of implants/tattoos is available at 7 T, many centers either conservatively exclude all subjects with implants/tattoos or have started to perform dedicated tests for selected implants. This work presents our experience in imaging volunteers with implants/tattoos at 7 T over the last seven and a half years. MATERIALS AND METHODS: 1796 questionnaires were analyzed retrospectively to identify subjects with implants/tattoos imaged at 7 T. For a total of 230 subjects, the type of local transmit/receive RF coil used for examination, imaging sequences, acquisition time, and the type of implants/tattoos and their location with respect to the field of view were documented. These subjects had undergone examination after careful consideration by an internal safety panel consisting of three experts in MR safety and physics. RESULTS: None of the subjects reported sensations of heat or force before, during, or after the examination. None expressed any discomfort related to implants/tattoos. Artifacts were reported in 52% of subjects with dental implants; all artifacts were restricted to the mouth area and did not affect image quality in the brain parenchyma. CONCLUSION: Our initial experience at 7 T indicates that a strict rejection of subjects with tattoos and/or implants is not justified. Imaging can be conditionally performed in carefully selected subjects after collection of substantial safety information and evaluation of the detailed exposure scenario (RF coil/type and position of implant). Among the assessed subjects with tattoos, no side effects from the exposure to 7 T MRI were reported.


Subject(s)
Magnetic Resonance Imaging/methods , Prostheses and Implants , Tattooing , Artifacts , Contraindications , Equipment Safety , Female , Healthy Volunteers , Humans , Male , Patient Safety , Radio Waves , Retrospective Studies , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...