Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 380(2235): 20210258, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36088918

ABSTRACT

The retreat of Arctic sea ice is enabling increased ocean wave activity at the sea ice edge, yet the interactions between surface waves and sea ice are not fully understood. Here, we examine in situ observations of wave spectra spanning 2012-2021 in the western Arctic marginal ice zone (MIZ). Swells exceeding 30 cm are rarely observed beyond 100 km inside the MIZ. However, local wind waves are observed in patches of open water amid partial ice cover during the summer. These local waves remain fetch-limited between ice floes with heights less than 1 m. To investigate these waves at climate scales, we conduct experiments varying wave attenuation and generation in ice with a global model including coupled interactions between waves and sea ice. A weak high-frequency attenuation rate is required to simulate the local waves in observations. The choices of attenuation scheme and wind input in ice have a remarkable impact on the extent of wave activity across ice-covered oceans, particularly in the Antarctic. As well as demonstrating the need for stronger constraints on wave attenuation, our results suggest that further attention should be directed towards locally generated wind waves and their role in sea ice evolution. This article is part of the theme issue 'Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks'.

2.
Philos Trans A Math Phys Eng Sci ; 380(2235): 20210267, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36088930

ABSTRACT

Perspectives are discussed on future directions for the field of marginal ice zone (MIZ) dynamics, based on the extraordinary progress made over the past decade in its theory, modelling and observations. Research themes are proposed that would shift the field's focus towards the broader implications of MIZ dynamics in the climate system. In particular, pathways are recommended for research that highlights the impacts of trends in the MIZ on the responses of Arctic and Antarctic sea ice to climate change. This article is part of the theme issue 'Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks'.


Subject(s)
Climate Change , Ice Cover , Antarctic Regions , Arctic Regions
SELECTION OF CITATIONS
SEARCH DETAIL
...