Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Photonics ; 10(5): 1240-1249, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37215317

ABSTRACT

Wilkinson power dividers (WPDs) are a popular element in RF and microwave technologies known for providing isolation capabilities. However, the benefits that WPDs could offer to integrated photonic systems are far less studied. Here, we investigate the thermal emission from and the noise performance of silicon-on-insulator (SOI) WPDs. We find that WPDs exhibit a noiseless port, with important implications for receiving systems and absorption-based quantum state transformations. At the same time, the thermal signals exiting noisy ports exhibit nontrivial correlations, opening the possibility for noise cancellation. We analyze passive and active networks containing WPDs showing how such nontrivial correlations can prevent the amplification of the thermal noise introduced by WPDs while benefiting from their isolation capabilities. Using this insight, we propose a modified ring-resonator amplifier that improves by N times the SNR in comparison with conventional traveling wave and ring-resonator amplifiers, with N being the number of inputs/outputs of the WPD. We believe that our results represent an important step forward in the implementation of SOI-WPDs and their integration in complex photonic networks, particularly for mid-IR and quantum photonics applications.

2.
Sensors (Basel) ; 23(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36991620

ABSTRACT

The Gap Waveguide technology utilizes an Artificial Magnetic Conductor (AMC) to prevent the propagation of electromagnetic (EM) waves under certain conditions, resulting in various gap waveguide configurations. In this study, a novel combination of Gap Waveguide technology and the traditional coplanar waveguide (CPW) transmission line is introduced, analyzed, and demonstrated experimentally for the first time. This new line is referred to as GapCPW. Closed-form expressions for its characteristic impedance and effective permittivity are derived using traditional conformal mapping techniques. Eigenmode simulations using finite-element analysis are then performed to assess its low dispersion and loss characteristics. The proposed line demonstrates an effective suppression of the substrate modes in fractional bandwidths up to 90%. In addition, simulations show that a reduction of up to 20% of the dielectric loss can be achieved with respect to the traditional CPW. These features depend on the dimensions of the line. The paper concludes with the fabrication of a prototype and validation of the simulation results in the W band (75-110 GHz).

3.
Opt Express ; 31(4): 6484-6498, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36823903

ABSTRACT

In this paper, we report on waveguide-type modified uni-traveling-carrier photodiodes (MUTC-PDs) providing a record high output power level for non-resonant photodiodes in the WR3.4 band. Indium phosphide (InP) based waveguide-type 1.55 µm MUTC-PDs have been fabricated and characterized thoroughly. Maximum output powers of -0.6 dBm and -2.7 dBm were achieved at 240 GHz and 280 GHz, respectively. This has been accomplished by an optimized layer structure and doping profile design that takes transient carrier dynamics into account. An energy-balance model has been developed to study and optimize carrier transport at high optical input intensities. The advantageous THz capabilities of the optimized MUTC layer structure are confirmed by experiments revealing a transit time limited cutoff frequency of 249 GHz and a saturation photocurrent beyond 20 mA in the WR3.4 band. The responsivity for a 16 µm long waveguide-type THz MUTC-PD is found to be 0.25 A/W. In addition, bow-tie antenna integrated waveguide-type MUTC-PDs are fabricated and reported to operate up to 0.7 THz above a received power of -40 dBm.

4.
Opt Express ; 30(21): 38596-38612, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258421

ABSTRACT

A novel photonic-assisted 2-D Terahertz beam steering chip using only two tuning elements is presented. The chip is based on an array of three leaky wave antennas (LWAs) with a monolithically integrated beamforming network (BFN) on a 50 µm-thick indium phosphide substrate. The THz beam angle in elevation (E-plane) is controlled via optical frequency tuning using a tunable dual-wavelength laser. An optical delay line is used for azimuth (H-plane) beam control. The simulated beam scanning range is 92° in elevation for a frequency sweep from 0.23 THz to 0.33 THz and 69.18° in azimuth for a time delay of 3.6 ps. For the frequency range from 0.26 THz to 0.32 THz, it is confirmed experimentally that the THz beam scans from -12° to +33°, which is in good agreement with the numerical simulations. The beam direction in azimuth scans with a total angle of 39° when applying a delay difference of 1.68 ps. A good agreement is found between theoretically predicted and experimentally determined THz beam angles with a maximum angle deviation below 5°. The experimental scanning angles are limited due to the mechanical constraints of the on-wafer probes, the on-chip integrated transition and the bandwidth of the THz receiver LNA. The mechanical limitation will be overcome when using a packaged chip.

5.
Sensors (Basel) ; 18(12)2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30545113

ABSTRACT

In-vehicle applications that are based on Vehicle-to-Everything (V2X) communication technologies need to be evaluated under lab-controlled conditions before performing field tests. The need for a tailored platform to perform specific research on the cooperative Advanced Driving Assistance System (ADAS) to assess the effect on driver behavior and driving performance motivated the development of a driver-centric traffic simulator that is built over a 3D graphics engine. The engine creates a driving situation as it communicates with a traffic simulator as a means to simulate real-life traffic scenarios. The TraCI as a Service (TraaS) library was implemented to perform the interaction between the driver-controlled vehicle and the Simulation of Urban MObility (SUMO). An extension of a previous version, this work improves simulation performance and realism by reducing computational demand and integrating a tailored scenario with the ADAS to be tested. The usability of the implemented simulation platform was evaluated by means of an experiment related to the efficiency of a Traffic Light Assistant (TLA), showing the analysis of the answer that 80% of the participants were satisfied with the simulator and the TLA system implemented.

SELECTION OF CITATIONS
SEARCH DETAIL
...