Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-33737502

ABSTRACT

Autophagy is a vacuolar pathway for the regulated degradation and recycling of cellular components. Beclin1, a Bcl2-interacting protein, is a well-studied autophagy regulator. Homozygous loss of Beclin1 in mice leads to early embryonic lethality. However, the role of Beclin1 in regulating the pluripotency of embryonic stem cells and their differentiation remains poorly explored. To study this, we generated Beclin1-Knockout (KO) mouse embryonic stem cells (mESCs) using the CRISPR-Cas9 genome-editing tool. Interestingly, Beclin1-KO mESCs did not show any change in the expression of pluripotency marker genes. Beclin1-KO mESCs also displayed active autophagy, suggesting the presence of Beclin1-independent autophagy in mESCs. However, loss of Beclin1 resulted in compromised differentiation of mESCs in vitro and in vivo due to misregulated expression of transcription factors. Our results suggest that Beclin1 may play an autophagy-independent role in regulating the differentiation of mESCs.


Subject(s)
Beclin-1/physiology , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/physiology , Animals , Autophagy/genetics , Beclin-1/genetics , CRISPR-Cas Systems , Cell Differentiation/genetics , Endoderm/cytology , Mesoderm/cytology , Mice , Mice, Knockout , Mice, SCID
2.
AIDS ; 31(5): 623-633, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28005686

ABSTRACT

OBJECTIVE: HIV-1 viral proteins and host inflammatory factors have a direct role in neuronal toxicity in vitro; however, the contribution of these factors in vivo in HIV-1-associated neurocognitive disorder (HAND) is not fully understood. We applied novel Systems Biology approaches to identify specific cellular and viral factors and their related pathways that are associated with different stages of HAND. DESIGN: A cross-sectional study of individuals enrolled in the Multicenter AIDS Cohort Study including HIV-1-seronegative (N = 36) and HIV-1-seropositive individuals without neurocognitive symptoms (N = 16) or with mild neurocognitive disorder (MND) (N = 8) or HIV-associated dementia (HAD) (N = 16). METHODS: A systematic evaluation of global transcriptome of peripheral blood mononuclear cells (PBMCs) obtained from HIV-1-seronegative individuals and from HIV-1-positive men without neurocognitive symptoms, or MND or HAD was performed. RESULTS: MND and HAD were associated with specific changes in mRNA transcripts and microRNAs in PBMCs. Comparison of upstream regulators and TimePath analyses identified specific cellular factors associated with MND and HAD, whereas HIV-1 viral proteins played a greater role in HAD. In addition, expression of specific microRNAs - miR-let-7a, miR-124, miR-15a and others - were found to correlate with mRNA gene expression and may have a potential protective role in asymptomatic HIV-1-seropositive individuals by regulating cellular signal transduction pathways downstream of chemokines and cytokines. CONCLUSION: These results identify signature transcriptome changes in PBMCs associated with stages of HAND and shed light on the potential contribution of host cellular factors and viral proteins in HAND development.


Subject(s)
AIDS Dementia Complex/physiopathology , Gene Expression Profiling , HIV Infections/complications , HIV-1/pathogenicity , Host-Pathogen Interactions , Leukocytes, Mononuclear/physiology , Leukocytes, Mononuclear/virology , Cells, Cultured , Cross-Sectional Studies , Gene Regulatory Networks , Humans , Male , Systems Biology/methods
3.
J Drug Target ; 25(4): 307-319, 2017 04.
Article in English | MEDLINE | ID: mdl-27800697

ABSTRACT

Persistent human immunodeficiency virus 1 (HIV-1) infection provokes immune activation and depletes CD4+ lymphocytes, leading to acquired immunodeficiency syndrome. Uninterrupted administration of combination antiretroviral therapy (cART) in HIV-infected patients suppresses viral replication to below the detectable level and partially restores the immune system. However, cART-unresponsive residual HIV-1 infection and elusive transcriptionally silent but reactivatable viral reservoirs maintain a permanent viral DNA blue print. The virus rebounds within a few weeks after interruption of suppressive therapy. Adjunct gene therapy to control viral replication by ribonucleic acid interference (RNAi) is a post-transcriptional gene silencing strategy that could suppress residual HIV-1 burden and overcome viral resistance. Small interfering ribonucleic acids (siRNAs) are efficient transcriptional inhibitors, but need delivery systems to reach inside target cells. We investigated the potential of chimeric peptide (FP-PTD) to deliver specific siRNAs to HIV-1-susceptible and permissive cells. Chimeric FP-PTD peptide was designed with an RNA binding domain (PTD) to bind siRNA and a cell fusion peptide domain (FP) to enter cells. FP-PTD-siRNA complex entered and inhibited HIV-1 replication in susceptible cells, and could be a candidate for in vivo testing.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/therapy , Peptides/therapeutic use , RNA, Small Interfering/genetics , Transduction, Genetic , Cells, Cultured , Genetic Therapy , HIV-1/isolation & purification , HIV-1/physiology , Humans , Macrophages/virology , Virus Replication/genetics
4.
J Neuroinflammation ; 9: 239, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-23078780

ABSTRACT

BACKGROUND: More than 50% of patients undergoing lifelong suppressive antiviral treatment for HIV-1 infection develop minor HIV-1-associated neurocognitive disorders. Neurological complications during HIV-1 infection are the result of direct neuronal damage by proinflammatory products released from HIV-1-infected or -uninfected activated lymphocytes, monocytes, macrophages, microglia and astrocytes. The specific pro-inflammatory products and their roles in neurotoxicity are far from clear. We investigated proinflammatory cytokines and chemokines in the cerebrospinal fluid (CSF) of HIV-demented (HIV-D) and HIV-nondemented (HIV-ND) patients and studied their affect on neuroglial toxicity. METHODS AND RESULTS: Bioplex array showed elevated levels of signatory chemokines or cytokines (IL-6, IFN-γ, CXCL10, MCP-1 and PDGF) in the CSF of HIV-D patients (n = 7) but not in that of HIV-ND patients (n = 7). Among the signatory cytokines and chemokines, CXCL10 was distinctly upregulated in-vitro in HIV-1 (NLENG1)-activated human fetal astrocytes, HIV-1 (Ba-L)-infected macrophages, and HIV-1 (NLENG1)-infected lymphocytes. Virus-infected macrophages also had increased levels of TNF-α. Consistently, human fetal astrocytes treated with HIV-1 and TNF-α induced the signatory molecules. CXCL10 in combination with HIV-1 synergistically enhanced neuronal toxicity and showed chemotactic activity (~ 40 fold) for activated peripheral blood mononuclear cells (PBMC), suggesting the intersection of signaling events imparted by HIV-1 and CXCL10 after binding to their respective surface receptors, CXCR4 and CXCR3, on neurons. Blocking CXCR3 and its downstream MAP kinase (MAPK) signaling pathway suppressed combined CXCL10 and HIV-1-induced neurotoxicity. Bryostatin, a PKC modulator and suppressor of CXCR4, conferred neuroprotection against combined insult with HIV-1 and CXCL10. Bryostatin also suppressed HIV-1 and CXCL10-induced PBMC chemotaxis. Although, therapeutic targeting of chemokines in brain may have adverse consequences on the host, current findings and earlier evidence suggest that CXCL10 could strongly impede neuroinflammation. CONCLUSION: We have demonstrated induction of CXCL10 and other chemokines/cytokines during HIV-1 infection in the brain, as well as synergism of CXCL10 with HIV-1 in neuronal toxicity, which was dampened by bryostatin.


Subject(s)
AIDS Dementia Complex/metabolism , Chemokine CXCL10/metabolism , Chemokine CXCL10/toxicity , Leukocytes, Mononuclear/drug effects , Neuroglia/drug effects , Neurons/drug effects , AIDS Dementia Complex/immunology , AIDS Dementia Complex/pathology , Adult , Brain/pathology , Bryostatins/pharmacology , Cell Movement/drug effects , Chemokine CXCL10/genetics , Cytotoxicity Tests, Immunologic , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , Female , Fetus , Flow Cytometry , Green Fluorescent Proteins/genetics , HIV-1/metabolism , Humans , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/virology , Male , Middle Aged , Neuroglia/virology , Neurons/virology , Polymers/metabolism , RNA, Messenger/metabolism , Signal Transduction/drug effects , Time Factors
5.
PLoS One ; 6(11): e27915, 2011.
Article in English | MEDLINE | ID: mdl-22140483

ABSTRACT

Despite the effectiveness of combination antiretroviral treatment (cART) against HIV-1, evidence indicates that residual infection persists in different cell types. Intensification of cART does not decrease the residual viral load or immune activation. cART restricts the synthesis of infectious virus but does not curtail HIV-1 transcription and translation from either the integrated or unintegrated viral genomes in infected cells. All treated patients with full viral suppression actually have low-level viremia. More than 60% of treated individuals also develop minor HIV-1 -associated neurocognitive deficits (HAND) due to residual virus and immune activation. Thus, new therapeutic agents are needed to curtail HIV-1 transcription and residual virus. In this study, luteolin, a dietary supplement, profoundly reduced HIV-1 infection in reporter cells and primary lymphocytes. HIV-1inhibition by luteolin was independent of viral entry, as shown by the fact that wild-type and VSV-pseudotyped HIV-1 infections were similarly inhibited. Luteolin was unable to inhibit viral reverse transcription. Luteolin had antiviral activity in a latent HIV-1 reactivation model and effectively ablated both clade-B- and -C -Tat-driven LTR transactivation in reporter assays but had no effect on Tat expression and its sub-cellular localization. We conclude that luteolin confers anti-HIV-1 activity at the Tat functional level. Given its biosafety profile and ability to cross the blood-brain barrier, luteolin may serve as a base flavonoid to develop potent anti-HIV-1 derivatives to complement cART.


Subject(s)
HIV-1/drug effects , Luteolin/pharmacology , tat Gene Products, Human Immunodeficiency Virus/metabolism , DNA, Viral/metabolism , Gene Expression Regulation, Viral/drug effects , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/genetics , HeLa Cells , Humans , Jurkat Cells , Luteolin/chemistry , Lymphocytes/drug effects , Lymphocytes/virology , Models, Biological , Reverse Transcription/drug effects , Transcriptional Activation/drug effects , Virus Activation/drug effects , Virus Integration/drug effects , Virus Internalization/drug effects
6.
Virus Res ; 155(1): 1-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20951748

ABSTRACT

Pathogenic viruses have developed a molecular defense arsenal for their survival by counteracting the host anti-viral system known as RNA interference (RNAi). Cellular RNAi, in addition to regulating gene expression through microRNAs, also serves as a barrier against invasive foreign nucleic acids. RNAi is conserved across the biological species, including plants, animals and invertebrates. Viruses in turn, have evolved mechanisms that can counteract this anti-viral defense of the host. Recent studies of mammalian viruses exhibiting RNA silencing suppressor (RSS) activity have further advanced our understanding of RNAi in terms of host-virus interactions. Viral proteins and non-coding viral RNAs can inhibit the RNAi (miRNA/siRNA) pathway through different mechanisms. Mammalian viruses having dsRNA-binding regions and GW/WG motifs appear to have a high chance of conferring RSS activity. Although, RSSs of plant and invertebrate viruses have been well characterized, mammalian viral RSSs still need in-depth investigations to present the concrete evidences supporting their RNAi ablation characteristics. The information presented in this review together with any perspective research should help to predict and identify the RSS activity-endowed new viral proteins that could be the potential targets for designing novel anti-viral therapeutics.


Subject(s)
Gene Expression Regulation, Viral , Host-Pathogen Interactions , RNA Interference , RNA, Viral/metabolism , Virulence Factors/metabolism , Viruses/immunology , Viruses/pathogenicity , Animals , Plants , RNA, Untranslated/metabolism , Viral Proteins/metabolism , Virulence
7.
PLoS One ; 5(6): e11160, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20585398

ABSTRACT

HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC) -alpha and -delta, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC) involving stress induced AMP Kinase (AMPK) inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs.


Subject(s)
Adenylate Kinase/metabolism , Bryostatins/pharmacology , HIV Infections/prevention & control , Protein Kinase C/metabolism , Signal Transduction , Cells, Cultured , HIV-1/physiology , Humans , Protein Kinase Inhibitors/pharmacology , Virus Latency
SELECTION OF CITATIONS
SEARCH DETAIL
...