Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 12(9)2021 08 26.
Article in English | MEDLINE | ID: mdl-34573304

ABSTRACT

The centromere is a fundamental chromosome structure in which the macro-molecular kinetochore assembles and is bound by spindle microtubules, allowing the segregation of sister chromatids during mitosis. Any alterations in kinetochore assembly or functioning or kinetochore-microtubule attachments jeopardize chromosome stability, leading to aneuploidy, a common feature of cancer cells. The spindle assembly checkpoint (SAC) supervises this process, ensuring a faithful segregation of chromosomes. CENP-E is both a protein of the kinetochore and a crucial component of the SAC required for kinetochore-microtubule capture and stable attachment, as well as congression of chromosomes to the metaphase plate. As the function of CENP-E is restricted to mitosis, its haploinsufficiency has been used to study the induced cell aneuploidy; however, the gene expression profile triggered by CENP-E reduction in normal cells has never been explored. To fill this gap, here we investigated whether a gene network exists that is associated with an siRNA-induced 50% reduction in CENP-E and consequent aneuploidy. Gene expression microarray analyses were performed at early and late timepoints after transfection. Initially, cell cycle regulation and stress response pathways were downregulated, while afterwards pathways involved in epithelial-mesenchymal transition, hypoxia and xenobiotic metabolism were altered. Collectively, our results suggest that CENP-E reduction triggers a gene expression program that recapitulates some features of tumor cells.


Subject(s)
Transcriptome
2.
Genomics ; 112(3): 2541-2549, 2020 05.
Article in English | MEDLINE | ID: mdl-32057913

ABSTRACT

Chromosome segregation defects lead to aneuploidy which is a major feature of solid tumors. How diploid cells face chromosome mis-segregation and how aneuploidy is tolerated in tumor cells are not completely defined yet. Thus, an important goal of cancer genetics is to identify gene networks that underlie aneuploidy and are involved in its tolerance. To this aim, we induced aneuploidy in IMR90 human primary cells by depleting pRB, DNMT1 and MAD2 and analyzed their gene expression profiles by microarray analysis. Bioinformatic analysis revealed a common gene expression profile of IMR90 cells that became aneuploid. Gene Set Enrichment Analysis (GSEA) also revealed gene-sets/pathways that are shared by aneuploid IMR90 cells that may be exploited for novel therapeutic approaches in cancer. Furthermore, Protein-Protein Interaction (PPI) network analysis identified TOP2A and KIF4A as hub genes that may be important for aneuploidy establishment.


Subject(s)
Aneuploidy , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Gene Expression Regulation , Mad2 Proteins/genetics , Retinoblastoma Protein/genetics , Cell Line , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Fibroblasts/metabolism , Gene Expression Profiling , Humans , Mad2 Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Protein Interaction Mapping , RNA Interference , Real-Time Polymerase Chain Reaction , Retinoblastoma Protein/metabolism , Transcriptome
3.
BMC Bioinformatics ; 20(Suppl 4): 120, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30999843

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNA molecules mediating the translational repression and degradation of target mRNAs in the cell. Mature miRNAs are used as a template by the RNA-induced silencing complex (RISC) to recognize the complementary mRNAs to be regulated. To discern further RISC functions, we analyzed the activities of two RISC proteins, AGO2 and GW182, in the MCF-7 human breast cancer cell line. METHODS: We performed three RIP-Chip experiments using either anti-AGO2 or anti-GW182 antibodies and compiled a data set made up of the miRNA and mRNA expression profiles of three samples for each experiment. Specifically, we analyzed the input sample, the immunoprecipitated fraction and the unbound sample resulting from the RIP experiment. We used the expression profile of the input sample to compute several variables, using formulae capable of integrating the information on miRNA binding sites, both in the 3'UTR and coding regions, with miRNA and mRNA expression level profiles. We compared immunoprecipitated vs unbound samples to determine the enriched or underrepresented genes in the immunoprecipitated fractions, independently for AGO2 and GW182 related samples. RESULTS: For each of the two proteins, we trained and tested several support vector machine algorithms capable of distinguishing the enriched from the underrepresented genes that were experimentally detected. The most efficient algorithm for distinguishing the enriched genes in AGO2 immunoprecipitated samples was trained by using variables involving the number of binding sites in both the 3'UTR and coding region, integrated with the miRNA expression profile, as expected for miRNA targets. On the other hand, we found that the best variable for distinguishing the enriched genes in the GW182 immunoprecipitated samples was the length of the coding region. CONCLUSIONS: Due to the major role of GW182 in GW/P-bodies, our data suggests that the AGO2-GW182 RISC recruits genes based on miRNA binding sites in the 3'UTR and coding region, but only the longer mRNAs probably remain sequestered in GW/P-bodies, functioning as a repository for translationally silenced RNAs.


Subject(s)
Argonaute Proteins/metabolism , Autoantigens/metabolism , Chromatin Immunoprecipitation/methods , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Argonaute Proteins/genetics , Autoantigens/genetics , Binding Sites , Gene Expression Profiling , Gene Expression Regulation , Humans , MCF-7 Cells , MicroRNAs/genetics , Open Reading Frames/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Support Vector Machine
4.
Oncotarget ; 9(49): 29064-29081, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-30018736

ABSTRACT

The S100 gene family is the largest subfamily of calcium binding proteins of EF-hand type, expressed in tissue and cell-specific manner, acting both as intracellular regulators and extracellular mediators. There is a growing interest in the S100 proteins and their relationships with different cancers because of their involvement in a variety of biological events closely related to tumorigenesis and cancer progression. However, the collective role and the possible coordination of this group of proteins, as well as the functional implications of their expression in breast cancer (BC) is still poorly known. We previously reported a large-scale proteomic investigation performed on BC patients for the screening of multiple forms of S100 proteins. Present study was aimed to assess the functional correlation between protein and gene expression patterns and the prognostic values of the S100 family members in BC. By using data mining, we showed that S100 members were collectively deregulated in BC, and their elevated expression levels were correlated with shorter survival and more aggressive phenotypes of BC (basal like, HER2 enriched, ER-negative and high grading). Moreover a multi-omics functional network analysis highlighted the regulatory effects of S100 members on several cellular pathways associated with cancer and cancer progression, expecially immune response and inflammation. Interestingly, for the first time, a pathway analysis was successfully applied on different omics data (transcriptomics and proteomics) revealing a good convergence between pathways affected by S100 in BC. Our data confirm S100 members as a promising panel of biomarkers for BC prognosis.

5.
Cancer Cell ; 30(2): 273-289, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27478041

ABSTRACT

The adipocyte-rich microenvironment forms a niche for ovarian cancer metastasis, but the mechanisms driving this process are incompletely understood. Here we show that salt-inducible kinase 2 (SIK2) is overexpressed in adipocyte-rich metastatic deposits compared with ovarian primary lesions. Overexpression of SIK2 in ovarian cancer cells promotes abdominal metastasis while SIK2 depletion prevents metastasis in vivo. Importantly, adipocytes induce calcium-dependent activation and autophosphorylation of SIK2. Activated SIK2 plays a dual role in augmenting AMPK-induced phosphorylation of acetyl-CoA carboxylase and in activating the PI3K/AKT pathway through p85α-S154 phosphorylation. These findings identify SIK2 at the apex of the adipocyte-induced signaling cascades in cancer cells and make a compelling case for targeting SIK2 for therapy in ovarian cancer.


Subject(s)
Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/metabolism , Adipocytes/enzymology , Adipocytes/metabolism , Adipocytes/pathology , Animals , Female , Heterografts , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Neoplasm Metastasis , Oncogene Protein v-akt/metabolism , Ovarian Neoplasms/enzymology , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...