Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 12(10)2021 09 30.
Article in English | MEDLINE | ID: mdl-34680955

ABSTRACT

Facial eczema (FE) is a significant metabolic disease that affects New Zealand ruminants. Ingestion of the mycotoxin sporidesmin leads to liver and bile duct damage, which can result in photosensitisation, reduced productivity and death. Strategies used to manage the incidence and severity of the disease include breeding. In sheep, there is considerable genetic variation in the response to FE. A commercial testing program is available for ram breeders who aim to increase tolerance, determined by the concentration of the serum enzyme, gamma-glutamyltransferase 21 days after a measured sporidesmin challenge (GGT21). Genome-wide association studies were carried out to determine regions of the genome associated with GGT21. Two regions on chromosomes 15 and 24 are reported, which explain 5% and 1% of the phenotypic variance in the response to FE, respectively. The region on chromosome 15 contains the ß-globin locus. Of the significant SNPs in the region, one is a missense variant within the haemoglobin subunit ß (HBB) gene. Mass spectrometry of haemoglobin from animals with differing genotypes at this locus indicated that genotypes are associated with different forms of adult ß-globin. Haemoglobin haplotypes have previously been associated with variation in several health-related traits in sheep and warrant further investigation regarding their role in tolerance to FE in sheep. We show a strategic approach to the identification of regions of importance for commercial breeding programs with a combination of discovery, statistical and biological validation. This study highlights the power of using increased density genotyping for the identification of influential genomic regions, combined with subsequent inclusion on lower density genotyping platforms.


Subject(s)
Eczema/genetics , Genome-Wide Association Study/veterinary , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sheep Diseases/genetics , Animals , Eczema/blood , Eczema/etiology , Eczema/veterinary , Genome-Wide Association Study/methods , Hemoglobins/genetics , Sheep , Sheep Diseases/blood , Sheep Diseases/etiology , Sporidesmins/toxicity , gamma-Glutamyltransferase/blood
2.
J Rheumatol ; 48(11): 1736-1744, 2021 11.
Article in English | MEDLINE | ID: mdl-34210831

ABSTRACT

OBJECTIVE: The Maori and Pacific (Polynesian) population of Aotearoa New Zealand has a high prevalence of gout. Our aim was to identify potentially functional missense genetic variants in candidate inflammatory genes amplified in frequency that may underlie the increased prevalence of gout in Polynesian populations. METHODS: A list of 712 inflammatory disease-related genes was generated. An in silico targeted exome set was extracted from whole genome sequencing data in people with gout of various ancestral groups (Polynesian, European, East Asian; n = 55, 780, 135, respectively) to identify Polynesian-amplified common missense variants (minor allele frequency > 0.05). Candidate functional variants were tested for association with gout by multivariable-adjusted regression analysis in 2528 individuals of Polynesian ancestry. RESULTS: We identified 26 variants common in the Polynesian population and uncommon in the European and East Asian populations. Three of the 26 population-amplified variants were nominally associated with the risk of gout (rs1635712 [KIAA0319], ORmeta = 1.28, Pmeta = 0.03; rs16869924 [CLNK], ORmeta = 1.37, Pmeta = 0.002; rs2070025 [fibrinogen A alpha chain (FGA)], ORmeta = 1.34, Pmeta = 0.02). The CLNK variant, within the established SLC2A9 gout locus, was genetically independent of the association signal at SLC2A9. CONCLUSION: We provide nominal evidence for the existence of population-amplified genetic variants conferring risk of gout in Polynesian populations. Polymorphisms in CLNK have previously been associated with gout in other populations, supporting our evidence for the association of this gene with gout.


Subject(s)
Gout , Native Hawaiian or Other Pacific Islander , Gene Frequency , Glucose Transport Proteins, Facilitative/genetics , Gout/genetics , Humans , Native Hawaiian or Other Pacific Islander/genetics , New Zealand , Polymorphism, Single Nucleotide
3.
Nat Commun ; 10(1): 4957, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673082

ABSTRACT

In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding.


Subject(s)
Body Size/genetics , Cognition , Consanguinity , Fertility/genetics , Health Status , Inbreeding Depression/genetics , Risk-Taking , Alleles , Haplotypes , Homozygote , Humans
4.
J Anim Sci ; 96(11): 4512-4520, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30099550

ABSTRACT

Pneumonia is an important issue for sheep production, leading to reduced growth rate and a predisposition to pleurisy. The objective of this study was to identify loci associated with pneumonic lesions and pleurisy in New Zealand progeny test lambs. The lungs from 3,572 progeny-test lambs were scored for presence and severity of pneumonic lesions and pleurisy at slaughter. Animals were genotyped using the Illumina Ovine Infinium HD SNP BeadChip (606,006 markers). The heritability of lung lesion score and pleurisy were calculated using the genomic relationship matrix, and genome-wide association analyses were conducted using EMMAX and haplotype trend regression. At slaughter, 35% of lambs had pneumonic lesions, with 9% showing lesions on more than half of any individual lobe. The number of lambs recorded as having pleurisy by the processing plants was 9%. Heritability estimates for pneumonic lesions and pleurisy scores adjusted for heteroscedasticity (CPSa and PLEURa) were 0.16 (± 0.03) and 0.05 (± 0.02), respectively. Five single-nucleotide polymorphisms (SNPs) were significantly associated with pneumonic lesions at the genome-wide level, and additional 37 SNPs were suggestively significant. Four SNPs were significantly associated with pleurisy, with an additional 11 SNPs reaching the suggestive level of significance. There were no regions that overlapped between the 2 traits. Multiple SNPs were in regions that contained genes involved in either the DNA damage response or the innate immune response, including several that had previously been reported to have associations with respiratory disease. Both EMMAX and HTR analyses of pleurisy data showed a significant peak on chromosome 2, located downstream from the transcription factor SP3. SP3 activates or suppresses the expression of numerous genes, including several genes with known functions in the immune system. This study identified several SNPs associated with genes involved in both the innate immune response and the response to DNA damage that are associated with pneumonic lesions and pleurisy in lambs at slaughter. Additionally, the identification in sheep of several SNPs within genes that have previously been associated with the respiratory system in cattle, pigs, rats, and mice indicates that there may be common pathways that underlie the response to invasion by respiratory pathogens in multiple species.


Subject(s)
Genome-Wide Association Study/veterinary , Pleurisy/veterinary , Polymorphism, Single Nucleotide/genetics , Sheep Diseases/genetics , Animals , Genetic Predisposition to Disease , Genotype , Haplotypes , Lung/pathology , New Zealand , Phenotype , Pleurisy/genetics , Sheep
5.
Genet Sel Evol ; 48(1): 71, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27663120

ABSTRACT

BACKGROUND: Genotype imputation is a key element of the implementation of genomic selection within the New Zealand sheep industry, but many factors can influence imputation accuracy. Our objective was to provide practical directions on the implementation of imputation strategies in a multi-breed sheep population genotyped with three single nucleotide polymorphism (SNP) panels: 5K, 50K and HD (600K SNPs). RESULTS: Imputation from 5K to HD was slightly better (0.6 %) than imputation from 5K to 50K. Two-step imputation from 5K to 50K and then from 50K to HD outperformed direct imputation from 5K to HD. A slight loss in imputation accuracy was observed when a large fixed reference population was used compared to a smaller within-breed reference (including all 50K genotypes on animals from different breeds excluding those in the validation set i.e. to be imputed), but only for a few animals across all imputation scenarios from 5K to 50K. However, a major gain in imputation accuracy for a large proportion of animals (purebred and crossbred), justified the use of a fixed and large reference dataset for all situations. This study also investigated the loss in imputation accuracy specifically for SNPs located at the ends of each chromosome, and showed that only chromosome 26 had an overall imputation (5K to 50K) accuracy for 100 SNPs at each end higher than 60 % (r2). Most of the chromosomes displayed reduced imputation accuracy at least at one of their ends. Prediction of imputation accuracy based on the relatedness of low-density genotypes to those of the reference dataset, before imputation (without running an imputation software) was also investigated. FIMPUTE V2.2 outperformed BEAGLE 3.3.2 across all imputation scenarios. CONCLUSIONS: Imputation accuracy in sheep breeds can be improved by following a set of recommendations on SNP panels, software, strategies of imputation (one- or two-step imputation), and choice of the animals to be genotyped using both high- and low-density SNP panels. We present a method that predicts imputation accuracy for individual animals at the low-density level, before running imputation, which can be used to restrict genomic prediction only to the animals that can be imputed with sufficient accuracy.

6.
Genetics ; 160(4): 1587-97, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11973312

ABSTRACT

Comparative maps between ruminant species and humans are increasingly important tools for the discovery of genes underlying economically important traits. In this article we present a primary linkage map of the deer genome derived from an interspecies hybrid between red deer (Cervus elaphus) and Père David's deer (Elaphurus davidianus). The map is approximately 2500 cM long and contains >600 markers including both evolutionary conserved type I markers and highly polymorphic type II markers (microsatellites). Comparative mapping by annotation and sequence similarity (COMPASS) was demonstrated to be a useful tool for mapping bovine and ovine ESTs in deer. Using marker order as a phylogenetic character and comparative map information from human, mouse, deer, cattle, and sheep, we reconstructed the karyotype of the ancestral Pecoran mammal and identified the chromosome rearrangements that have occurred in the sheep, cattle, and deer lineages. The deer map and interspecies hybrid pedigrees described here are a valuable resource for (1) predicting the location of orthologs to human genes in ruminants, (2) mapping QTL in farmed and wild deer populations, and (3) ruminant phylogenetic studies.


Subject(s)
Chromosome Mapping , Deer/genetics , Evolution, Molecular , Genome , Animals , Cattle , Expressed Sequence Tags , Humans , Microsatellite Repeats , Ruminants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...