Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 46275, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28425461

ABSTRACT

Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 µm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes.

2.
Chemphyschem ; 18(5): 493-499, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28006081

ABSTRACT

The influence of Ca codoping on the optical absorption, photo-, radio-, and thermo-luminescence properties of YAlO3 :Ce (YAP:Ce) crystals has been studied for four different calcium concentrations ranging from 0 to 500 ppm. Ca codoping results in a partial oxidation of Ce3+ into Ce4+ , The luminescence time response under pulsed X-ray excitation of the Ce3+ /Ce4+ admixure clearly demonstrates the role of hole migration on both the rise time and the generally observed slow components. From an application point of view, Ca codoping significantly improves the timing performances, but the induced presence of Ce4+ ions is also the cause of a reduction in scintillation efficiency.

3.
J Appl Crystallogr ; 49(Pt 3): 743-755, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27275133

ABSTRACT

Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed (e.g. while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole) is studied in situ during the melting and solidification processes with a temporal resolution of 5-7 s. The strong tendency of the Eu dopant to segregate during the solidification process is observed in repeated cycles, with Eu forming clusters on multiple length scales (only for clusters larger than ∼50 µm, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change in concentration of one of the elements with a sufficient neutron attenuation cross section. Tomographic imaging of the BaBrCl:0.1%Eu sample reveals a strong correlation between crystal fractures and Eu-deficient clusters. The results of these experiments demonstrate the unique capabilities of neutron imaging for in situ diagnostics and the optimization of crystal-growth procedures.

SELECTION OF CITATIONS
SEARCH DETAIL
...