Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
Nat Commun ; 8: 14177, 2017 01 30.
Article in English | MEDLINE | ID: mdl-28134340

ABSTRACT

Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation of Smoothened (SMO), which is disrupted by disease-causing mutations in TZ components. Here we identify kinesin-3 motor protein KIF13B as a novel member of the RPGRIP1N-C2 domain-containing protein family and show that KIF13B regulates TZ membrane composition and ciliary SMO accumulation. KIF13B is upregulated during ciliogenesis and is recruited to the ciliary base by NPHP4, which binds to two distinct sites in the KIF13B tail region, including an RPGRIP1N-C2 domain. KIF13B and NPHP4 are both essential for establishment of a CAV1 membrane microdomain at the TZ, which in turn is required for Shh-induced ciliary SMO accumulation. Thus KIF13B is a novel regulator of ciliary TZ configuration, membrane composition and Shh signalling.


Subject(s)
Caveolin 1/metabolism , Cilia/physiology , Kinesins/metabolism , Proteins/metabolism , Signal Transduction/physiology , Smoothened Receptor/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Cell Membrane/physiology , Computational Biology , Gene Expression Profiling , Gene Expression Regulation/physiology , Gene Knockout Techniques , HEK293 Cells , Hedgehog Proteins/metabolism , Humans , Kinesins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , NIH 3T3 Cells , Protein Domains/physiology , Up-Regulation , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
3.
Am J Hum Genet ; 100(2): 323-333, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28089251

ABSTRACT

Nephronophthisis (NPH), an autosomal-recessive tubulointerstitial nephritis, is the most common cause of hereditary end-stage renal disease in the first three decades of life. Since most NPH gene products (NPHP) function at the primary cilium, NPH is classified as a ciliopathy. We identified mutations in a candidate gene in eight individuals from five families presenting late-onset NPH with massive renal fibrosis. This gene encodes MAPKBP1, a poorly characterized scaffolding protein for JNK signaling. Immunofluorescence analyses showed that MAPKBP1 is not present at the primary cilium and that fibroblasts from affected individuals did not display ciliogenesis defects, indicating that MAPKBP1 may represent a new family of NPHP not involved in cilia-associated functions. Instead, MAPKBP1 is recruited to mitotic spindle poles (MSPs) during the early phases of mitosis where it colocalizes with its paralog WDR62, which plays a key role at MSP. Detected mutations compromise recruitment of MAPKBP1 to the MSP and/or its interaction with JNK2 or WDR62. Additionally, we show increased DNA damage response signaling in fibroblasts from affected individuals and upon knockdown of Mapkbp1 in murine cell lines, a phenotype previously associated with NPH. In conclusion, we identified mutations in MAPKBP1 as a genetic cause of juvenile or late-onset and cilia-independent NPH.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Kidney Diseases, Cystic/congenital , Adolescent , Alleles , Animals , Cell Cycle Proteins , Child , Cilia/genetics , DNA Damage/genetics , Disease Models, Animal , Fibroblasts/cytology , Fibroblasts/metabolism , Fibrosis , Gene Expression Regulation , Humans , Kidney/cytology , Kidney/metabolism , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/genetics , Mice , Mice, Knockout , Mitosis , Mutation , NIH 3T3 Cells , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pedigree , Phenotype , Signal Transduction , Spindle Poles/metabolism , Young Adult , Zebrafish
4.
J Invest Dermatol ; 137(3): 641-649, 2017 03.
Article in English | MEDLINE | ID: mdl-27866969

ABSTRACT

Transforming growth factor-ß (TGF-ß) is a multifunctional growth factor involved in many physiological processes including wound healing and inflammation. Excessive TGF-ß signaling in the skin has been implicated in fibrotic skin disorders such as keloids and scleroderma. We previously identified CD109 as a TGF-ß co-receptor and inhibitor of TGF-ß signaling and have shown that transgenic mice overexpressing CD109 in the epidermis display decreased scarring. In certain cell types, in addition to the canonical type I receptor, ALK5, which activates Smad2/3, TGF-ß can signal through another type I receptor, ALK1, which activates Smad1/5. Here we demonstrate that ALK1 is expressed and co-localizes with CD109 in mouse keratinocytes and that mice overexpressing CD109 in the epidermis display enhanced ALK1-Smad1/5 signaling but decreased ALK5-Smad2/3 signaling, TGF-ß expression, and extracellular matrix production in the skin when compared with wild-type littermates. Furthermore, treatment with conditioned media from isolated keratinocytes or epidermal explants from CD109 transgenic mouse skin leads to a decrease in extracellular matrix production in mouse skin fibroblasts. Taken together, our findings suggest that CD109 differentially regulates TGF-ß-induced ALK1-Smad1/5 versus ALK5-Smad2/3 pathways, leading to decreased extracellular matrix production in the skin and that epidermal CD109 expression regulates dermal function through a paracrine mechanism.


Subject(s)
Activin Receptors, Type I/metabolism , Antigens, CD/metabolism , Epidermis/metabolism , Extracellular Matrix/metabolism , Neoplasm Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Activin Receptors, Type II , Animals , Fibroblasts/metabolism , Keratinocytes/cytology , Mice , Mice, Transgenic , Phosphorylation , Receptor, Transforming Growth Factor-beta Type I , Signal Transduction , Skin/metabolism , Transforming Growth Factor beta/metabolism
5.
Hum Mutat ; 37(10): 1025-9, 2016 10.
Article in English | MEDLINE | ID: mdl-27319779

ABSTRACT

Neonatal sclerosing cholangitis (NSC) is a rare biliary disease leading to liver transplantation in childhood. Patients with NSC and ichtyosis have already been identified with a CLDN1 mutation, encoding a tight-junction protein. However, for the majority of patients, the molecular basis of NSC remains unknown. We identified biallelic missense mutations or in-frame deletion in DCDC2 in four affected children. Mutations involve highly conserved amino acids in the doublecortin domains of the protein. In cholangiocytes, DCDC2 protein is normally located in the cytoplasm and cilia, whereas in patients the mutated protein is accumulated in the cytoplasm, absent from cilia, and associated with ciliogenesis defect. This is the first report of DCDC2 mutations in NSC. This data expands the molecular spectrum of NSC, that can be considered as a ciliopathy and also expands the clinical spectrum of the DCDC2 mutations, previously reported in dyslexia, deafness, and nephronophtisis.


Subject(s)
Cholangitis, Sclerosing/genetics , Cilia/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mutation , Cholangitis, Sclerosing/metabolism , Cytoplasm/metabolism , Female , Humans , Male , Microtubule-Associated Proteins/chemistry , Mutation, Missense , Pedigree , Protein Domains , Sequence Deletion
6.
Nat Commun ; 6: 8666, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26487268

ABSTRACT

Ciliopathies are a large group of clinically and genetically heterogeneous disorders caused by defects in primary cilia. Here we identified mutations in TRAF3IP1 (TNF Receptor-Associated Factor Interacting Protein 1) in eight patients from five families with nephronophthisis (NPH) and retinal degeneration, two of the most common manifestations of ciliopathies. TRAF3IP1 encodes IFT54, a subunit of the IFT-B complex required for ciliogenesis. The identified mutations result in mild ciliary defects in patients but also reveal an unexpected role of IFT54 as a negative regulator of microtubule stability via MAP4 (microtubule-associated protein 4). Microtubule defects are associated with altered epithelialization/polarity in renal cells and with pronephric cysts and microphthalmia in zebrafish embryos. Our findings highlight the regulation of cytoplasmic microtubule dynamics as a role of the IFT54 protein beyond the cilium, contributing to the development of NPH-related ciliopathies.


Subject(s)
Carrier Proteins/genetics , Kidney Diseases, Cystic/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mutation , Retinal Degeneration/genetics , Zebrafish Proteins/genetics , Animals , Blotting, Western , Carrier Proteins/metabolism , Cell Polarity/genetics , Circular Dichroism , Embryo, Nonmammalian , Female , Fluorescent Antibody Technique , Gene Knockout Techniques , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Immunoprecipitation , Kidney Diseases, Cystic/metabolism , Male , Microphthalmos/genetics , Pedigree , Retinal Degeneration/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish , Zebrafish Proteins/metabolism
7.
J Am Soc Nephrol ; 25(11): 2435-43, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24876116

ABSTRACT

Several genes, mainly involved in podocyte cytoskeleton regulation, have been implicated in familial forms of primary FSGS. We identified a homozygous missense mutation (p.P209L) in the TTC21B gene in seven families with FSGS. Mutations in this ciliary gene were previously reported to cause nephronophthisis, a chronic tubulointerstitial nephropathy. Notably, tubular basement membrane thickening reminiscent of that observed in nephronophthisis was present in patients with FSGS and the p.P209L mutation. We demonstrated that the TTC21B gene product IFT139, an intraflagellar transport-A component, mainly localizes at the base of the primary cilium in developing podocytes from human fetal tissue and in undifferentiated cultured podocytes. In contrast, in nonciliated adult podocytes and differentiated cultured cells, IFT139 relocalized along the extended microtubule network. We further showed that knockdown of IFT139 in podocytes leads to primary cilia defects, abnormal cell migration, and cytoskeleton alterations, which can be partially rescued by p.P209L overexpression, indicating its hypomorphic effect. Our results demonstrate the involvement of a ciliary gene in a glomerular disorder and point to a critical function of IFT139 in podocytes. Altogether, these data suggest that this homozygous TTC21B p.P209L mutation leads to a novel hereditary kidney disorder with both glomerular and tubulointerstitial damages.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cilia/physiology , Glomerulosclerosis, Focal Segmental/genetics , Microtubule-Associated Proteins/genetics , Podocytes/physiology , Adolescent , Adult , Animals , Cell Line, Transformed , Child , Cilia/pathology , Family Health , Female , Glomerulosclerosis, Focal Segmental/pathology , Haplotypes , Homozygote , Humans , Male , Mice , Mutation, Missense , Pedigree , Phenotype , Podocytes/pathology , Stress Fibers/pathology , Stress Fibers/physiology , Young Adult
8.
Am J Hum Genet ; 93(5): 915-25, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24140113

ABSTRACT

Intraflagellar transport (IFT) depends on two evolutionarily conserved modules, subcomplexes A (IFT-A) and B (IFT-B), to drive ciliary assembly and maintenance. All six IFT-A components and their motor protein, DYNC2H1, have been linked to human skeletal ciliopathies, including asphyxiating thoracic dystrophy (ATD; also known as Jeune syndrome), Sensenbrenner syndrome, and Mainzer-Saldino syndrome (MZSDS). Conversely, the 14 subunits in the IFT-B module, with the exception of IFT80, have unknown roles in human disease. To identify additional IFT-B components defective in ciliopathies, we independently performed different mutation analyses: candidate-based sequencing of all IFT-B-encoding genes in 1,467 individuals with a nephronophthisis-related ciliopathy or whole-exome resequencing in 63 individuals with ATD. We thereby detected biallelic mutations in the IFT-B-encoding gene IFT172 in 12 families. All affected individuals displayed abnormalities of the thorax and/or long bones, as well as renal, hepatic, or retinal involvement, consistent with the diagnosis of ATD or MZSDS. Additionally, cerebellar aplasia or hypoplasia characteristic of Joubert syndrome was present in 2 out of 12 families. Fibroblasts from affected individuals showed disturbed ciliary composition, suggesting alteration of ciliary transport and signaling. Knockdown of ift172 in zebrafish recapitulated the human phenotype and demonstrated a genetic interaction between ift172 and ift80. In summary, we have identified defects in IFT172 as a cause of complex ATD and MZSDS. Our findings link the group of skeletal ciliopathies to an additional IFT-B component, IFT172, similar to what has been shown for IFT-A.


Subject(s)
Cerebellar Ataxia/genetics , Ellis-Van Creveld Syndrome/genetics , Intracellular Signaling Peptides and Proteins/genetics , Retinitis Pigmentosa/genetics , Alleles , Amino Acid Sequence , Animals , Asian People/genetics , Bone and Bones/abnormalities , Bone and Bones/metabolism , Bone and Bones/pathology , Cerebellar Ataxia/pathology , Craniosynostoses/genetics , Craniosynostoses/pathology , Cytoplasmic Dyneins/genetics , Cytoplasmic Dyneins/metabolism , Dyneins/genetics , Dyneins/metabolism , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/pathology , Ellis-Van Creveld Syndrome/pathology , Epistasis, Genetic , Female , Fibroblasts/pathology , Gene Knockdown Techniques , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Male , Molecular Sequence Data , Mutation , Phenotype , Retinitis Pigmentosa/pathology , White People/genetics , Zebrafish/genetics
9.
Hum Mutat ; 34(5): 714-24, 2013 May.
Article in English | MEDLINE | ID: mdl-23418020

ABSTRACT

Ciliopathies are genetically heterogeneous disorders characterized by variable expressivity and overlaps between different disease entities. This is exemplified by the short rib-polydactyly syndromes, Jeune, Sensenbrenner, and Mainzer-Saldino chondrodysplasia syndromes. These three syndromes are frequently caused by mutations in intraflagellar transport (IFT) genes affecting the primary cilia, which play a crucial role in skeletal and chondral development. Here, we identified mutations in IFT140, an IFT complex A gene, in five Jeune asphyxiating thoracic dystrophy (JATD) and two Mainzer-Saldino syndrome (MSS) families, by screening a cohort of 66 JATD/MSS patients using whole exome sequencing and targeted resequencing of a customized ciliopathy gene panel. We also found an enrichment of rare IFT140 alleles in JATD compared with nonciliopathy diseases, implying putative modifier effects for certain alleles. IFT140 patients presented with mild chest narrowing, but all had end-stage renal failure under 13 years of age and retinal dystrophy when examined for ocular dysfunction. This is consistent with the severe cystic phenotype of Ift140 conditional knockout mice, and the higher level of Ift140 expression in kidney and retina compared with the skeleton at E15.5 in the mouse. IFT140 is therefore a major cause of cono-renal syndromes (JATD and MSS). The present study strengthens the rationale for IFT140 screening in skeletal ciliopathy spectrum patients that have kidney disease and/or retinal dystrophy.


Subject(s)
Biological Transport/genetics , Cilia/metabolism , Kidney Diseases/genetics , Mutation , Animals , Cerebellar Ataxia/genetics , Child , Cohort Studies , Disease Progression , Exome , Humans , Kidney Diseases/pathology , Male , Mice , Retinitis Pigmentosa/genetics
10.
Am J Hum Genet ; 90(5): 864-70, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22503633

ABSTRACT

Mainzer-Saldino syndrome (MSS) is a rare disorder characterized by phalangeal cone-shaped epiphyses, chronic renal failure, and early-onset, severe retinal dystrophy. Through a combination of ciliome resequencing and Sanger sequencing, we identified IFT140 mutations in six MSS families and in a family with the clinically overlapping Jeune syndrome. IFT140 is one of the six currently known components of the intraflagellar transport complex A (IFT-A) that regulates retrograde protein transport in ciliated cells. Ciliary abundance and localization of anterograde IFTs were altered in fibroblasts of affected individuals, a result that supports the pivotal role of IFT140 in proper development and function of ciliated cells.


Subject(s)
Carrier Proteins/genetics , Cerebellar Ataxia/genetics , Mutation , Retinitis Pigmentosa/genetics , Adolescent , Alleles , Carrier Proteins/metabolism , Child , Child, Preschool , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Male , Pedigree , Protein Transport/genetics
11.
J Cell Biochem ; 113(1): 238-46, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21898545

ABSTRACT

Transforming growth factor-ß (TGF-ß) is a multifunctional cytokine that regulates a wide variety of cellular processes including proliferation, differentiation, and extracellular matrix deposition. Dysregulation of TGF-ß signaling is associated with several diseases such as cancer and tissue fibrosis. TGF-ß signals through two transmembrane proteins known as the type I (TGFBR1) and type II (TGFBR2) receptors. The levels of these receptors at the cell surface are tightly regulated by several mechanisms, including degradation following recruitment of the E3 ubiquitin ligase SMAD ubiquitination regulatory factor (Smurf) 2 by SMAD7. In addition, TGF-ß co-receptors can modulate TGF-ß signaling receptor activity in a cell-specific manner. We have previously identified a novel TGF-ß co-receptor, CD109, a glycosyl phosphatidylinositol (GPI)-anchored protein that negatively regulates TGF-ß signaling. Despite CD109's potential relevance as a regulator of TGF-ß action in vivo, the mechanisms by which CD109 regulates TGF-ß signaling are still incompletely understood. Previously, we have shown that CD109 downregulates TGF-ß signaling by promoting TGF-ß receptor localization into the lipid raft/caveolae compartment and by enhancing TGF-ß receptor degradation. Here, we demonstrate that CD109 enhances SMAD7/Smurf2-mediated degradation of TGFBR1 in a ligand-dependent manner. Moreover, we show that CD109 regulates the localization and the association of SMAD7/Smurf2 with TGFBR1. Finally, we demonstrate that CD109's inhibitory effect on TGF-ß signaling and responses require SMAD7 expression and Smurf2 ubiquitin ligase activity. Taken together, these results suggest that CD109 is an important regulator of SMAD7/Smurf2-mediated degradation of TGFBR1.


Subject(s)
Antigens, CD/metabolism , Neoplasm Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Smad7 Protein/metabolism , Transforming Growth Factor beta/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Animals , COS Cells , Cell Line , Chlorocebus aethiops , GPI-Linked Proteins/metabolism , HEK293 Cells , Humans , Receptor, Transforming Growth Factor-beta Type I , Receptor, Transforming Growth Factor-beta Type II , Signal Transduction , Transforming Growth Factor beta/metabolism , Ubiquitination
12.
Exp Dermatol ; 20(8): 627-32, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21539622

ABSTRACT

Transforming growth factor (TGF)-ß is an important cytokine that negatively regulates keratinocyte proliferation. Deregulation of TGF-ß signalling has been reported in psoriasis, where despite increased expression of TGF-ß, psoriatic keratinocytes continue to hyperproliferate. Recently, we have identified CD109, a glycosyl phosphatidylinositol (GPI)-anchored protein, as a novel co-receptor and negative regulator of TGF-ß signalling. In the current work, we demonstrate that release of CD109 from the cell surface or the addition of CD109 protein results in downregulation of TGF-ß signalling and TGF-ß receptor expression in human keratinocytes. Moreover, these effects are associated with an increase in phospho-STAT3 levels, enhanced total STAT3 and Bcl-2 expression and an increase in cell growth and survival, suggesting that released/soluble CD109 is able to induce molecular changes that are known to occur in psoriasis. Analysis of CD109 expression in psoriasis patients reveals that CD109 protein expression is markedly decreased in psoriatic epidermis as compared to adjacent uninvolved skin. In contrast, CD109 mRNA expression is unchanged in psoriatic plaques in comparison with normal skin. This raises a possibility that CD109 protein release is enhanced in psoriatic keratinocytes. Furthermore, psoriatic epidermis displays decreased expression of TGF-ß receptors, consistent with the results obtained in vitro in keratinocytes with CD109 release or addition of CD109 recombinant protein. Together our findings suggest that aberrant CD109 release from the cell surface in human keratinocytes may induce molecular changes that are usually observed in psoriasis and may explain TGF-ß receptor downregulation and decrease in TGF-ß signalling in psoriasis.


Subject(s)
Antigens, CD/metabolism , Cell Membrane/metabolism , Keratinocytes/metabolism , Neoplasm Proteins/metabolism , Psoriasis/metabolism , Receptors, Transforming Growth Factor beta/metabolism , STAT3 Transcription Factor/metabolism , Transforming Growth Factor beta/metabolism , Cell Line , Cell Proliferation , Cell Survival/physiology , GPI-Linked Proteins/metabolism , Humans , Keratinocytes/cytology , Proto-Oncogene Proteins c-bcl-2/metabolism , Psoriasis/pathology , Psoriasis/physiopathology , Signal Transduction/physiology
13.
Biochim Biophys Acta ; 1813(5): 742-53, 2011 May.
Article in English | MEDLINE | ID: mdl-21295082

ABSTRACT

Transforming growth factor-ß (TGF-ß) is implicated in numerous pathological disorders, including cancer and mediates a broad range of biological responses by signaling through the type I and II TGF-ß receptors. Internalization of these receptors via the clathrin-coated pits pathway facilitates SMAD-mediated signaling, whereas internalization via the caveolae pathway is associated with receptor degradation. Thus, molecules that modulate receptor endocytosis are likely to play a critical role in regulating TGF-ß action. We previously identified CD109, a GPI-anchored protein, as a TGF-ß co-receptor and a negative regulator of TGF-ß signaling. Here, we demonstrate that CD109 associates with caveolin-1, a major component of the caveolae. Moreover, CD109 increases binding of TGF-ß to its receptors and enhances their internalization via the caveolae. In addition, CD109 promotes localization of the TGF-ß receptors into the caveolar compartment in the presence of ligand and facilitates TGF-ß-receptor degradation. Thus, CD109 regulates TGF-ß receptor endocytosis and degradation to inhibit TGF-ß signaling. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Subject(s)
Antigens, CD/metabolism , Endocytosis , Neoplasm Proteins/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Caveolae/metabolism , Caveolin 1/metabolism , Cell Compartmentation , Cell Line , GPI-Linked Proteins/metabolism , Humans , Ligands , Models, Biological , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Transport , Receptor, Transforming Growth Factor-beta Type I , Receptor, Transforming Growth Factor-beta Type II , Signal Transduction , Transforming Growth Factor beta/metabolism
14.
FASEB J ; 20(9): 1525-7, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16754747

ABSTRACT

We have previously reported that keratinocytes defective in glycosylphosphatidylinositol (GPI)-anchor biosynthesis display enhanced TGF-beta responses. These studies implicated the involvement of a 150 kDa GPI-anchored TGF-beta1 binding protein, r150, in modulating TGF-beta signaling. Here, we sought to determine the molecular identity of r150 by affinity purification and microsequencing. Our results identify r150 as CD109, a novel member of the alpha2-macroglobulin (alpha2M)/complement superfamily, whose function has remained obscure. In addition, we have identified a novel CD109 isoform that occurs in the human placenta but not keratinocytes. Biochemical studies show that r150 contains an internal thioester bond, a defining feature of the alpha2M/complement family. Loss and gain of function studies demonstrate that CD109 is a component of the TGF-beta receptor system, and a negative modulator of TGF-beta responses in keratinocytes, as implicated for r150. Our data suggest that CD109 can inhibit TGF-beta signaling independently of ligand sequestration and may exert its effect on TGF-beta signaling by direct modulation of receptor activity. Together, our results linking CD109 function to regulation of TGF-beta signaling suggest that CD109 plays a unique role in the regulation of isoform-specific TGF-beta signaling in keratinocytes.


Subject(s)
Antigens, CD/physiology , Keratinocytes/physiology , Neoplasm Proteins/physiology , Receptors, Transforming Growth Factor beta/physiology , Transforming Growth Factor beta/pharmacology , Antigens, CD/genetics , Cell Line , GPI-Linked Proteins , Humans , Keratinocytes/drug effects , Neoplasm Proteins/genetics , Recombinant Proteins/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...