Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Oncogene ; 26(5): 633-40, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-16909123

ABSTRACT

Recently, we have shown that RhoB suppresses EGFR-, ErbB2-, Ras- and Akt-mediated malignant transformation and metastasis. In this paper, we demonstrate that the novel antitumor agents farnesyltransferase inhibitors (FTIs) and geranylgeranyltransferase I inhibitors (GGTIs) upregulate RhoB expression in a wide spectrum of human cancer cells including those from pancreatic, breast, lung, colon, bladder and brain cancers. RhoB induction by FTI-277 and GGTI-298 occurs at the transcriptional level and is blocked by actinomycin D. Reverse transcription-PCR experiments documented that the increase in RhoB protein levels is due to an increase in RhoB transcription. Furthermore, treatment with FTIs and GGTIs of cancer cells results in HDAC1 dissociation, HAT association and histone acetylation of the RhoB promoter. Thus, promoter acetylation is a novel mechanism by which RhoB expression levels are regulated following treatment with the anticancer agents FTIs and GGTIs.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Farnesyltranstransferase/antagonists & inhibitors , Histone Acetyltransferases/metabolism , Histone Deacetylases/metabolism , Histones/metabolism , Promoter Regions, Genetic , rhoB GTP-Binding Protein/genetics , Acetylation , Alkyl and Aryl Transferases/metabolism , Antineoplastic Agents , Benzamides/pharmacology , Enzyme Inhibitors/pharmacology , Farnesyltranstransferase/metabolism , Histone Deacetylase 1 , Humans , Methionine/analogs & derivatives , Methionine/pharmacology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Processing, Post-Translational , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Up-Regulation , rhoB GTP-Binding Protein/metabolism
2.
Oncogene ; 19(48): 5525-33, 2000 Nov 16.
Article in English | MEDLINE | ID: mdl-11114730

ABSTRACT

Several small GTPases of the Ras superfamily have been shown to antagonize TGFbeta signaling in human tumor cell lines. Some of these GTPases are post-translationally modified by farnesylation, a lipid modification catalyzed by farnesyltransferase and required for the proteins to attach to membranes and to function. In this study, we investigated the effect of the farnesyltransferase inhibitor FTI-277 on TGFbeta-regulated cell growth and transcription. Treatment of the human pancreatic tumor cell line, Panc-1, with FTI-277 enhanced the ability of TGFbeta to inhibit both anchorage-dependent and -independent tumor cell growth. FTI-277 also enhanced the ability of TGFbeta to induce transcription, as measured by p3TP-lux reporter activity and collagen synthesis. The enhancement of TGFbeta responses by FTI-277 correlated with the stimulation of transcription and protein expression of type II TGFbeta receptor (TbetaRII). Consequently, FTI-277-treated cells exhibited a higher level of TGFbeta binding to its receptor. Thus, inhibition of protein farnesylation stimulates TbetaRII expression, which leads to increased TGFbeta receptor binding and signaling as well as inhibition of tumor cell growth and transformation.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Methionine/analogs & derivatives , Methionine/pharmacology , Receptors, Transforming Growth Factor beta/biosynthesis , Signal Transduction/physiology , Transforming Growth Factor beta/pharmacology , 3T3 Cells/drug effects , 3T3 Cells/metabolism , Animals , Cell Division/drug effects , Cell Transformation, Neoplastic/drug effects , Drug Synergism , Farnesyltranstransferase , Humans , Mice , Protein Serine-Threonine Kinases , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1 , Tumor Cells, Cultured/drug effects
3.
Mol Cell Biol ; 18(12): 6962-70, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9819384

ABSTRACT

We have recently reported that the geranylgeranyltransferase I inhibitor GGTI-298 arrests human tumor cells at the G1 phase of the cell cycle and increases the protein and RNA levels of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). Here, we show that GGTI-298 acts at the transcriptional level to induce p21(WAF1/CIP1) in a human pancreatic carcinoma cell line, Panc-1. This upregulation of p21(WAF1/CIP1) promoter was selective, since GGTI-298 inhibited serum responsive element- and E2F-mediated transcription. A functional analysis of the p21(WAF1/CIP1) promoter showed that a GC-rich region located between positions -83 and -74, which contains a transforming growth factor beta-responsive element and one Sp1-binding site, is sufficient for the upregulation of p21(WAF1/CIP1) promoter by GGTI-298. Electrophoretic mobility shift assays showed a small increase in the amount of DNA-bound Sp1-Sp3 complexes. Furthermore, the analysis of Sp1 transcriptional activity in GGTI-298-treated cells by using GAL4-Sp1 chimera or Sp1-chloramphenicol acetyltransferase reporter revealed a significant increase in Sp1-mediated transcription. Moreover, GGTI-298 treatment also resulted in increased Sp1 and Sp3 phosphorylation. These results suggest that GGTI-298-mediated upregulation of p21(WAF1/CIP1) involves both an increase in the amount of DNA-bound Sp1-Sp3 and enhancement of Sp1 transcriptional activity. To identify the geranylgeranylated protein(s) involved in p21(WAF1/CIP1) transcriptional activation, we analyzed the effects of the small GTPases Rac1 and RhoA on p21(WAF1/CIP1) promoter activity. The dominant negative mutant of RhoA, but not Rac1, was able to activate p21(WAF1/CIP1). In contrast, constitutively active RhoA repressed p21(WAF1/CIP1). Accordingly, the ADP-ribosyl transferase C3, which specifically inhibits Rho proteins, enhanced the activity of p21(WAF1/CIP1). Taken together, these results suggest that one mechanism by which GGTI-298 upregulates p21(WAF1/CIP1) transcription is by preventing the small GTPase RhoA from repressing p21(WAF1/CIP1) induction.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Benzamides/pharmacology , Cyclins/genetics , GTP-Binding Proteins/genetics , Genes, Regulator/genetics , Sp1 Transcription Factor/genetics , Transforming Growth Factor beta/genetics , Up-Regulation/genetics , Binding Sites/genetics , Cyclin-Dependent Kinase Inhibitor p21 , DNA-Binding Proteins/genetics , Enzyme Inhibitors/pharmacology , G1 Phase/genetics , Humans , Nuclear Proteins/genetics , Pancreatic Neoplasms/genetics , Phosphorylation , Promoter Regions, Genetic/genetics , Sp3 Transcription Factor , Transcription Factors/genetics , Transfection/genetics , Tumor Cells, Cultured , rhoA GTP-Binding Protein
SELECTION OF CITATIONS
SEARCH DETAIL