Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Bioinformatics ; 15(5): 370-5, 1999 May.
Article in English | MEDLINE | ID: mdl-10366657

ABSTRACT

MOTIVATION: MELTSIM is a windows-based statistical mechanical program for simulating melting curves of DNAs of known sequence and genomic dimensions under different conditions of ionic strength with great accuracy. The program is useful for mapping variations of base compositions of sequences, conducting studies of denaturation, establishing appropriate conditions for hybridization and renaturation, determinations of sequence complexity, and sequence divergence. RESULTS: Good agreement is achieved between experimental and calculated melting curves of plasmid, bacterial, yeast and human DNAs. Denaturation maps that accompany the calculated curves indicate non-coding regions have a significantly lower (G+C) composition than coding regions in all species examined. Curves of partially sequenced human DNA suggest the current database may be heavily biased with coding regions, and excluding large (A+T)-rich elements. AVAILABILITY: MELTSIM 1.0 is available at: //www.uml.edu/Dept/Chem/UMLBIC/Apps/MEL TSIM/MELTSIM-1.0-Win/meltsim. zip. Melting curve plots in this paper were made with GNUPLOT 3.5, available at: http://www.cs.dartmouth.edu/gnuplot_inf o.html Contact : blake@maine.maine.edu;


Subject(s)
Computer Simulation , DNA/analysis , Models, Statistical , Software , Base Composition , DNA, Bacterial/analysis , DNA, Fungal/analysis , Humans , Nucleic Acid Denaturation
3.
J Biomol Struct Dyn ; 16(2): 329-39, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9833671

ABSTRACT

The slime mold, Dictyostelium discoideum, possesses an (A+T) rich eukaryotic genome that is being sequenced in the Human Genome Project. High resolution melting curves of isolated total and fractionated nuclear D. discoideum DNA(AX3 strain) were determined experimentally and are compared to melting curves calculated from GENBANK sequences (1.59% of genome) by the statistical thermodynamics program MELTSIM (1), parameterized for long DNA sequences (2,3). The lower and upper temperature limits of calculated melting agree well with the observed melting of total DNA. The experimental curve is unusual in that it contains a number of sharp peaks. MELTSIM allowed us to calculate positional denaturation maps of D. discoideum GENBANK sequence documents containing the 26S, 5.8S and 17S rDNA gene sequences, a major satellite DNA and repetitive sequence family present in 100-200 copies/nucleus. These denaturation maps contain subtransitions that correspond with a number of the experimentally observed peaks, some of which we show to correspond with rDNA gene enriched CsCl gradient fractions of D. discoideum DNA. MELTSIM calculated curves of coding, intron and flanking sequences indicate that both intron and flanking sequences are extremely (A+T) rich and account for most of the low temperature melting. There is no temperature overlap between thermal stabilities of these sequence domains and those of coding DNA. The latter must satisfy triplet codon constraints of higher (G+C) content. These large stability property differences enable a denaturation mapping feature of MELTSIM to clearly distinguish exon positions from those of introns and flanking DNA in long D. discoideum gene containing sequences.


Subject(s)
DNA, Protozoan/chemistry , Dictyostelium/genetics , Exons , Introns , Mathematical Computing , Nucleic Acid Denaturation , Animals , Chemical Fractionation , Genome, Protozoan
SELECTION OF CITATIONS
SEARCH DETAIL
...