Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 34(14): 4199-4209, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29528230

ABSTRACT

The glass transition of supported polystyrene (PS) and poly(2-vinylpyridine) (P2VP) thin films in the vicinity of the substrate interface was studied by using a nanoplasmonic sensing (NPS) method. This "nanocalorimetric" approach utilizes localized surface plasmon resonance from two-dimensional arrangements of sensor nanoparticles deposited on SiO2-coated glass substrates. The NPS results demonstrated the existence of a high glass transition temperature ( Tg,high) along with the bulk glass transition temperature ( Tg,bulk ≈ 100 °C for PS and P2VP) within the thin films: Tg,high ≈ 160 °C for PS and Tg,high ≈ 200 °C for P2VP. To understand the origin of the Tg,high, we also studied the thermal transitions of lone polymer chains strongly adsorbed onto the substrate surface using solvent rinsing. Interestingly, the NPS data indicated that the Tg,high is attributed to the adsorbed polymer chains. To provide a better understanding of the mechanism of the Tg,high, molecular dynamics simulations were performed on a PS film adsorbed on hydrophobic and hydrophilic substrates. The simulation results illuminated the presence of a higher density region closest to the substrate surface regardless of the magnitude of the polymer-solid interactions. We postulate that the highly packed chain conformation reduces the free volume at the substrate interface, resulting in the Tg,high. Moreover, the simulation results revealed that the deviation of the Tg,high from the bulk Tg,bulk becomes larger as the polymer-substrate interaction increases, which is in line with the experimental findings.

2.
Environ Sci Technol ; 40(24): 7739-44, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17256521

ABSTRACT

Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to investigate dextran adsorption to alumina and silica. Sensitive adsorption measurements combined with determination of nanometer-scale polymer conformations demonstrate the utility of this technique for studying biopolymer adsorption. The adsorbed amounts and polymeric structures of dextran were determined on A12O3 and SiO2 by real-time monitoring of resonance frequency and energy dissipation changes (deltaf and deltaD). After the sample was rinsed, the apparent mass of retained dextran was 83 ng/cm(2) on the alumina surface and 9 ng/cm2 on the silica surface based on the frequency and energy dissipation changes. The deltaD/deltaf ratios were significantly different on the two surfaces, indicating different conformations of the polymers. On alumina, the ratio changed as adsorption proceeded indicating changes of dextran conformation from the initial to latter adsorption steps. On silica, the ratio did not change during the experiments. Therefore, the dissipation and frequency data suggest significantly different mechanisms of dextran adsorption on alumina and silica surfaces. Molecular dynamics simulations of 12 monomeric units of dextran on a silica slab illustrated that H2O molecules lead to loosely bound dextran structure onto the SiO2 surface, consistent with the observed high-energy dissipation in the QCM-D experiments.


Subject(s)
Aluminum Oxide/chemistry , Bacteria/chemistry , Dextrans/chemistry , Polysaccharides/administration & dosage , Silicon Dioxide/chemistry , Adsorption , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...