Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
J Biol Chem ; 299(11): 105345, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37838172

ABSTRACT

The important bacterial pathogen Streptococcus pyogenes secretes IdeS (immunoglobulin G-degrading enzyme of S. pyogenes), a proteinase that cleaves human immunoglobulin G (IgG) antibodies in the hinge region resulting in Fc (fragment crystallizable) and F(ab')2 (fragment antigen-binding) fragments and protects the bacteria against phagocytic killing. Experiments with radiolabeled IdeS and flow cytometry demonstrated that IdeS binds to the surface of S. pyogenes, and the interaction was most prominent in conditions resembling those in the pharynx (acidic pH and low salt), the habitat for S. pyogenes. SpnA (S. pyogenes nuclease A) is a cell wall-anchored DNase. A dose-dependent interaction between purified SpnA and IdeS was demonstrated in slot binding and surface plasmon resonance spectroscopy experiments. Gel filtration showed that IdeS forms proteolytically active complexes with SpnA in solution, and super-resolution fluorescence microscopy revealed the presence of SpnA-IdeS complexes at the surface of S. pyogenes. Finally, specific IgG antibodies binding to S. pyogenes surface antigens were efficiently cleaved by surface-associated IdeS. IdeS is secreted by all S. pyogenes isolates and cleaves IgG antibodies with a unique degree of specificity and efficiency. These properties and the finding here that the proteinase is present and fully active at the bacterial surface in complex with SpnA implicate an important role for IdeS in S. pyogenes biology and pathogenesis.


Subject(s)
Bacterial Proteins , Streptococcus pyogenes , Humans , Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G , Peptide Hydrolases , Streptococcus pyogenes/metabolism
2.
EMBO Mol Med ; 15(2): e16208, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36507602

ABSTRACT

Group A streptococci have evolved multiple strategies to evade human antibodies, making it challenging to create effective vaccines or antibody treatments. Here, we have generated antibodies derived from the memory B cells of an individual who had successfully cleared a group A streptococcal infection. The antibodies bind with high affinity in the central region of the surface-bound M protein. Such antibodies are typically non-opsonic. However, one antibody could effectively promote vital immune functions, including phagocytosis and in vivo protection. Remarkably, this antibody primarily interacts through a bivalent dual-Fab cis mode, where the Fabs bind to two distinct epitopes in the M protein. The dual-Fab cis-binding phenomenon is conserved across different groups of M types. In contrast, other antibodies binding with normal single-Fab mode to the same region cannot bypass the M protein's virulent effects. A broadly binding, protective monoclonal antibody could be a candidate for anti-streptococcal therapy. Our findings highlight the concept of dual-Fab cis binding as a means to access conserved, and normally non-opsonic regions, regions for protective antibody targeting.


Subject(s)
Antibodies, Monoclonal , Antigens, Bacterial , Humans , Epitopes , Phagocytosis
5.
iScience ; 24(4): 102339, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33855284

ABSTRACT

Streptococcus pyogenes is a major bacterial pathogen in the human population and isolates of the clinically important M1 serotype secrete protein Streptococcal inhibitor of complement (SIC) known to interfere with human innate immunity. Here we find that SIC from M1 bacteria interacts with TLR2 and CD14 on monocytes leading to the activation of the NF-κB and p38 MAPK pathways and the release of several pro-inflammatory cytokines (e.g. TNFα and INFγ). In human plasma, SIC binds clusterin and histidine-rich glycoprotein, and whole plasma, and these two purified plasma proteins enhanced the activation of monocytes by SIC. Isolates of the M55 serotype secrete an SIC homolog, but this protein did not activate monocytes. M1 isolates are common in cases of invasive S. pyogenes infections characterized by massive inflammation, and the results of this study indicate that the pro-inflammatory property of SIC contributes to the pathology of these severe clinical conditions.

6.
NPJ Vaccines ; 6(1): 62, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33888727

ABSTRACT

Highly pathogenic emm1 Streptococcus pyogenes strains secrete the multidomain Streptococcal inhibitor of complement (SIC) that binds and inactivates components of the innate immune response. We aimed to determine if naturally occurring or vaccine-induced antibodies to SIC are protective against invasive S. pyogenes infection. Immunisation with full-length SIC protected mice against systemic bacterial dissemination following intranasal or intramuscular infection with emm1 S. pyogenes. Vaccine-induced rabbit anti-SIC antibodies, but not naturally occurring human anti-SIC antibodies, enhanced bacterial clearance in an ex vivo whole-blood assay. SIC vaccination of both mice and rabbits resulted in antibody recognition of all domains of SIC, whereas naturally occurring human anti-SIC antibodies recognised the proline-rich region of SIC only. We, therefore, propose a model whereby natural infection with S. pyogenes generates non-protective antibodies against the proline-rich region of SIC, while vaccination with full-length SIC permits the development of protective antibodies against all SIC domains.

7.
Front Microbiol ; 11: 65, 2020.
Article in English | MEDLINE | ID: mdl-32117109

ABSTRACT

The Gram-positive anaerobic commensal Finegoldia magna colonizes the skin and other non-sterile body surfaces, and is an important opportunistic pathogen. Here we analyzed the effect of F. magna on human primary neutrophils. F. magna strains ALB8 (expressing protein FAF), 312 (expressing protein L) and 505 (naturally lacking both protein FAF and L) as well as their associated proteins activate neutrophils to release reactive oxygen species, an indication for neutrophil oxidative burst. Co-incubation of neutrophils with the bacteria leads to a strong increase of CD66b surface expression, another indicator for neutrophil activation. Furthermore, all tested stimuli triggered the release of NETs from the activated neutrophils, pointing to a host defense mechanism in response to the tested stimuli. This phenotype is dependent on actin rearrangement, NADPH oxidases and the ERK1/2 pathway. Proteins FAF and L also induced the secretion of several pro-inflammatory neutrophil proteins; HBP, IL-8 and INFγ. This study shows for the first time a direct interaction of F. magna with human neutrophils and suggests that the activation of neutrophils plays a role in F. magna pathogenesis.

8.
Front Immunol ; 10: 2165, 2019.
Article in English | MEDLINE | ID: mdl-31616410

ABSTRACT

In primary systemic small vessel vasculitis autoantibodies are common and seem to play an important role in the pathogenesis. Autoantibodies in vasculitis are preferentially directed against components of the immune system or directly against components of the vessel wall. Plasmapheresis is often applied in emergency situationists when the function of vital organs is jeopardized, the level of clinical evidence to apply such therapy, however, varies between low and non-existing. Plasmapheresis is a blunt and unspecific instrument that requires several sessions to achieve a substantial reduction of autoantibody levels. IdeS and EndoS are two relatively recently discovered enzymes produced by S. pyogenes, that have a remarkable capacity to degrade and disarm IgG. They have shown positive results in several in vivo models of autoimmunity, and treatment with IdeS has successfully been used to inactivate HLA alloantibodies in patients undergoing renal transplantation. Both IdeS and EndoS have the potential to become precision tools to replace plasmapheresis in the treatment of vasculitic emergencies and a clinical trial of IdeS in anti-GBM vasculitis is now ongoing.


Subject(s)
Autoantibodies/immunology , Bacterial Proteins/therapeutic use , Immunoglobulin G/immunology , Kidney Transplantation , Streptococcus pyogenes/enzymology , Vasculitis , Animals , Disease Models, Animal , Humans , Isoantibodies/immunology , Plasmapheresis , Vasculitis/immunology , Vasculitis/pathology , Vasculitis/therapy
9.
Front Immunol ; 10: 1230, 2019.
Article in English | MEDLINE | ID: mdl-31214187

ABSTRACT

Streptococcus pyogenes infects over 700 million people worldwide annually. Immune evasion strategies employed by the bacteria include binding of the complement inhibitors, C4b-binding protein (C4BP) and Factor H in a human-specific manner. We recently showed that human IgG increased C4BP binding to the bacterial surface, which promoted streptococcal immune evasion and increased mortality in mice. We sought to identify how IgG promotes C4BP binding to Protein H, a member of the M protein family. Dimerization of Protein H is pivotal for enhanced binding to human C4BP. First, we illustrated that Protein H, IgG, and C4BP formed a tripartite complex. Second, surface plasmon resonance revealed that Protein H binds IgG solely through Fc, but not Fab domains, and with high affinity (IgG-Protein H: KD = 0.4 nM; IgG-Fc-Protein H: KD ≤ 1.6 nM). Each IgG binds two Protein H molecules, while up to six molecules of Protein H bind one C4BP molecule. Third, interrupting Protein H dimerization either by raising temperature to 41°C or with a synthetic peptide prevented IgG-Protein H interactions. IgG-Fc fragments or monoclonal human IgG permitted maximal C4BP binding when used at concentrations from 0.1 to 10 mg/ml. In contrast, pooled human IgG enhanced C4BP binding at concentrations up to 1 mg/ml; decreased C4BP binding at 10 mg/ml occurred probably because of Fab-streptococcal interactions at these high IgG concentrations. Taken together, our data show how S. pyogenes exploits human IgG to evade complement and enhance its virulence. Elucidation of this mechanism could aid design of new therapeutics against S. pyogenes.


Subject(s)
Complement C4b-Binding Protein/immunology , Host-Pathogen Interactions/immunology , Immunoglobulin G/immunology , Immunomodulation , Streptococcal Infections/immunology , Streptococcus pyogenes/immunology , Complement C4b-Binding Protein/metabolism , Complement Factor H/chemistry , Complement Factor H/immunology , Complement Factor H/metabolism , Disease Susceptibility/immunology , Disease Susceptibility/metabolism , Humans , Kinetics , Ligands , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Protein Binding , Protein Multimerization , Streptococcal Infections/metabolism , Streptococcal Infections/microbiology
10.
Nat Commun ; 10(1): 2727, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31227708

ABSTRACT

A fundamental challenge in medical microbiology is to characterize the dynamic protein-protein interaction networks formed at the host-pathogen interface. Here, we generate a quantitative interaction map between the significant human pathogen, Streptococcus pyogenes, and proteins from human saliva and plasma obtained via complementary affinity-purification and bacterial-surface centered enrichment strategies and quantitative mass spectrometry. Perturbation of the network using immunoglobulin protease cleavage, mixtures of different concentrations of saliva and plasma, and different S. pyogenes serotypes and their isogenic mutants, reveals how changing microenvironments alter the interconnectivity of the interaction map. The importance of host immunoglobulins for the interaction with human complement proteins is demonstrated and potential protective epitopes of importance for phagocytosis of S. pyogenes cells are localized. The interaction map confirms several previously described protein-protein interactions; however, it also reveals a multitude of additional interactions, with possible implications for host-pathogen interactions involving other bacterial species.


Subject(s)
Antibodies, Bacterial/metabolism , Bacterial Proteins/metabolism , Host-Pathogen Interactions/immunology , Streptococcal Infections/immunology , Streptococcus pyogenes/immunology , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Bacterial Proteins/immunology , Chromatography, Affinity , Complement System Proteins/immunology , Complement System Proteins/metabolism , Epitope Mapping , Healthy Volunteers , Humans , Mass Spectrometry , Opsonin Proteins/immunology , Opsonin Proteins/metabolism , Protein Binding , Protein Interaction Mapping , Protein Interaction Maps/immunology , Streptococcal Infections/blood , Streptococcal Infections/microbiology , Streptococcus pyogenes/metabolism
11.
J Biol Chem ; 293(35): 13578-13591, 2018 08 31.
Article in English | MEDLINE | ID: mdl-30002122

ABSTRACT

Some strains of the bacterial pathogen Streptococcus pyogenes secrete protein SIC (streptococcal inhibitor of complement), including strains of the clinically relevant M1 serotype. SIC neutralizes the effect of a number of antimicrobial proteins/peptides and interferes with the function of the host complement system. Previous studies have shown that some S. pyogenes proteins bind and modulate coagulation and fibrinolysis factors, raising the possibility that SIC also may interfere with the activity of these factors. Here we show that SIC interacts with both human thrombin and plasminogen, key components of coagulation and fibrinolysis. We found that during clot formation, SIC binds fibrin through its central region and that SIC inhibits fibrinolysis by interacting with plasminogen. Flow cytometry results indicated that SIC and plasminogen bind simultaneously to S. pyogenes bacteria, and fluorescence microscopy revealed co-localization of the two proteins at the bacterial surface. As a consequence, SIC-expressing bacteria entrapped in clots inhibit fibrinolysis, leading to delayed bacterial escape from the clots as compared with mutant bacteria lacking SIC. Moreover, within the clots SIC-expressing bacteria were protected against killing. In an animal model of subcutaneous infection, SIC-expressing bacteria exhibited a delayed systemic spread. These results demonstrate that the bacterial protein SIC interferes with coagulation and fibrinolysis and thereby enhances bacterial survival, a finding that has significant implications for S. pyogenes virulence.


Subject(s)
Bacterial Proteins/immunology , Fibrinolysis , Streptococcal Infections/immunology , Streptococcus pyogenes/immunology , Thrombosis/immunology , Animals , Complement System Proteins/immunology , Female , Fibrin/immunology , Fibrinogen/immunology , Humans , Immunity, Innate , Mice , Mice, Inbred C57BL , Streptococcal Infections/complications , Streptococcal Infections/microbiology , Thrombin/immunology , Thrombosis/complications , Thrombosis/microbiology
12.
J Immunol ; 200(10): 3495-3505, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29626087

ABSTRACT

Streptococcus pyogenes is an exclusively human pathogen that can provoke mild skin and throat infections but can also cause fatal septicemia. This gram-positive bacterium has developed several strategies to evade the human immune system, enabling S. pyogenes to survive in the host. These strategies include recruiting several human plasma proteins, such as the complement inhibitor, C4b-binding protein (C4BP), and human (hu)-IgG through its Fc region to the bacterial surface to evade immune recognition. We identified a novel virulence mechanism whereby IgG-enhanced binding of C4BP to five of 12 tested S. pyogenes strains expressed diverse M proteins that are important surface-expressed virulence factors. Importantly, all strains that bound C4BP in the absence of IgG bound more C4BP when IgG was present. Further studies with an M1 strain that additionally expressed protein H, also a member of the M protein family, revealed that binding of hu-IgG Fc to protein H increased the affinity of protein H for C4BP. Increased C4BP binding accentuated complement downregulation, resulting in diminished bacterial killing. Accordingly, mortality from S. pyogenes infection in hu-C4BP transgenic mice was increased when hu-IgG or its Fc portion alone was administered concomitantly. Electron microscopy analysis of human tissue samples with necrotizing fasciitis confirmed increased C4BP binding to S. pyogenes when IgG was present. Our findings provide evidence of a paradoxical function of hu-IgG bound through Fc to diverse S. pyogenes isolates that increases their virulence and may counteract the beneficial effects of IgG opsonization.


Subject(s)
Complement System Proteins/immunology , Immunoglobulin G/immunology , Streptococcus pyogenes/immunology , Virulence/immunology , Animals , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Carrier Proteins/immunology , Complement C4b-Binding Protein/immunology , Complement Inactivating Agents/immunology , Female , Humans , Male , Mice , Mice, Inbred BALB C , Phagocytosis/immunology , Protein Binding/immunology , Streptococcal Infections/immunology , Virulence Factors/immunology
13.
Am J Transplant ; 18(11): 2752-2762, 2018 11.
Article in English | MEDLINE | ID: mdl-29561066

ABSTRACT

Safety, immunogenicity, pharmacokinetics, and efficacy of the IgG-degrading enzyme of Streptococcus pyogenes (IdeS [imlifidase]) were assessed in a single-center, open-label ascending-dose study in highly sensitized patients with chronic kidney disease. Eight patients with cytotoxic PRAs (median cytotoxic PRAs of 64%) at enrollment received 1 or 2 intravenous infusions of IdeS on consecutive days (0.12 mg/kg body weight ×2 [n = 3]; 0.25 mg/kg ×1 [n = 3], or 0.25 mg/kg ×2 [n = 2]). IgG degradation was observed in all subjects after IdeS treatment, with <1% plasma IgG remaining within 48 hours and remaining low up to 7 days. Mean fluorescence intensity values of HLA class I and II reactivity were substantially reduced in all patients, and C1q binding to anti-HLA was abolished. IdeS also cleaved the IgG-type B cell receptor on CD19+ memory B cells. Anti-IdeS antibodies developed 1 week after treatment, peaking at 2 weeks. A few hours after the second IdeS infusion, 1 patient received a deceased donor kidney offer. At enrollment, the patient had a positive serum crossmatch (HLA-B7), detected by complement-dependent cytotoxicity, flow cytometry, and multiplex bead assays. After IdeS infusion (0.12 mg/kg ×2) and when the HLA-incompatible donor (HLA-B7+ ) kidney was offered, the HLA antibody profile was negative. The kidney was transplanted successfully.


Subject(s)
Bacterial Proteins/administration & dosage , Desensitization, Immunologic/methods , Graft Rejection/prevention & control , Graft Survival/immunology , HLA Antigens/immunology , Immunoglobulin G/metabolism , Isoantibodies/metabolism , Renal Insufficiency, Chronic/surgery , Adult , Aged , Bacterial Proteins/immunology , Bacterial Proteins/pharmacokinetics , Complement C1q/immunology , Female , Follow-Up Studies , Graft Rejection/etiology , Histocompatibility/immunology , Humans , Immunoglobulin G/immunology , Infusions, Intravenous , Isoantibodies/immunology , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Male , Middle Aged , Prognosis , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/metabolism , Risk Factors , Streptococcus pyogenes/enzymology
14.
Front Immunol ; 9: 236, 2018.
Article in English | MEDLINE | ID: mdl-29520265

ABSTRACT

Innate immunity relies on an effective recognition of the pathogenic microorganism as well as on endogenous danger signals. While bacteria in concert with their secreted virulence factors can cause a number of inflammatory reactions, danger signals released at the site of infection may in addition determine the amplitude of such responses and influence the outcome of the disease. Here, we report that protein SIC, Streptococcal Inhibitor of Complement, an abundant secreted protein from Streptococcus pyogenes, binds to extracellular histones, a group of danger signals released during necrotizing tissue damage. This interaction leads to the formation of large aggregates in vitro. Extracellular histones and SIC are abundantly expressed and seen colocalized in biopsies from patients with necrotizing soft-tissue infections caused by S. pyogenes. In addition, binding of SIC to histones neutralized their antimicrobial activity. Likewise, the ability of histones to induce hemolysis was inhibited in the presence of SIC. However, when added to whole blood, SIC was not able to block the pro-inflammatory effect of histones. Instead SIC boosted the histone-triggered release of a broad range of cytokines and chemokines, including IL-6, TNF-α, IL-8, IL-1ß, IL-1ra, G-CSF, and IFN-γ. These results demonstrate that the interaction between SIC and histones has multiple effects on the host response to S. pyogenes infection.


Subject(s)
Bacterial Proteins/immunology , Cytokines/metabolism , Histones/immunology , Soft Tissue Infections/immunology , Streptococcal Infections/immunology , Streptococcus pyogenes/immunology , Adult , Animals , Bacterial Proteins/metabolism , Biopsy , Cytokines/immunology , Histones/metabolism , Host Microbial Interactions/immunology , Humans , Immunity, Innate , Mice , Necrosis/blood , Necrosis/immunology , Necrosis/microbiology , Prospective Studies , Protein Binding , Soft Tissue Infections/blood , Soft Tissue Infections/microbiology , Soft Tissue Infections/pathology , Streptococcal Infections/blood , Streptococcal Infections/microbiology , Streptococcal Infections/pathology , Streptococcus pyogenes/isolation & purification , Streptococcus pyogenes/metabolism , Young Adult
15.
Mol Cell Proteomics ; 17(6): 1097-1111, 2018 06.
Article in English | MEDLINE | ID: mdl-29511047

ABSTRACT

Infectious diseases are characterized by a complex interplay between host and pathogen, but how these interactions impact the host proteome is unclear. Here we applied a combined mass spectrometry-based proteomics strategy to investigate how the human proteome is transiently modified by the pathogen Streptococcus pyogenes, with a particular focus on bacterial cleavage of IgG in vivo In invasive diseases, S. pyogenes evokes a massive host response in blood, whereas superficial diseases are characterized by a local leakage of several blood plasma proteins at the site of infection including IgG. S. pyogenes produces IdeS, a protease cleaving IgG in the lower hinge region and we find highly effective IdeS-cleavage of IgG in samples from local IgG poor microenvironments. The results show that IdeS contributes to the adaptation of S. pyogenes to its normal ecological niches. Additionally, the work identifies novel clinical opportunities for in vivo pathogen detection.


Subject(s)
Bacterial Proteins/pharmacology , Immunoglobulin G/metabolism , Proteome , Sepsis/metabolism , Streptococcal Infections/metabolism , Streptococcus pyogenes , Adolescent , Adult , Humans , Male , Mass Spectrometry , Middle Aged , Proteolysis , Young Adult
16.
Methods Mol Biol ; 1535: 339-351, 2017.
Article in English | MEDLINE | ID: mdl-27914091

ABSTRACT

The endoglycosidase EndoS and the protease IdeS from the human pathogen Streptococcus pyogenes are immunomodulating enzymes hydrolyzing human IgG. IdeS cleaves IgG in the lower hinge region, while EndoS hydrolyzes the conserved N-linked glycan in the Fc region. Both enzymes are remarkably specific for human IgG that after hydrolysis loses most of its effector functions, such as binding to leukocytes and complement activation, all contributing to bacterial evasion of adaptive immunity. However, taken out of their infectious context, we and others have shown that IdeS and EndoS can alleviate autoimmune disease in a number of animal models of antibody-mediated disorders. In this chapter, we will briefly describe the discovery and characterization of these unique enzymes, present the findings from a number of animal models of autoimmunity where the enzymes have been tested, and outline the ongoing clinical testing of IdeS. Furthermore, we will discuss the rationale for further development of IdeS and EndoS into novel pharmaceuticals against diseases where IgG antibodies contribute to the pathology, including, but not restricted to, chronic and acute autoimmunity, transplant rejection, and antidrug antibody reactions.


Subject(s)
Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmunity/drug effects , Bacterial Proteins/therapeutic use , Glycoside Hydrolases/therapeutic use , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Animals , Bacterial Proteins/pharmacology , Clinical Trials as Topic , Disease Models, Animal , Drug Evaluation, Preclinical , Glycoside Hydrolases/pharmacology , Graft Rejection/drug therapy , Graft Rejection/immunology , Humans , Hydrolysis , Proteolysis , Treatment Outcome
17.
Exp Dermatol ; 26(8): 691-696, 2017 08.
Article in English | MEDLINE | ID: mdl-27512946

ABSTRACT

IgG antibodies are potent inducers of proinflammatory responses by cross-linking Fc receptors on innate immune effector cells resulting in tissue injury. The recently discovered enzymes endoglycosidase S (EndoS) and IgG-degrading enzyme (IdeS) of Streptococcus pyogenes are able to modulate the interaction between IgG antibodies and the Fc receptors, by hydrolysis of the glycan associated with the heavy chain of the IgG molecule (EndoS), or cleavage in the hinge region of the heavy IgG chain (IdeS). In this work, we investigated their ability to inhibit damage mediated by skin-bound antibodies in vivo in two different experimental models, the Arthus reaction, and epidermolysis bullosa acquisita, an autoimmune blistering skin disease associated with autoantibodies against type VII collagen. We demonstrate that both enzymes efficiently interfere with IgG-mediated proinflammatory processes, offering a great asset to specifically target pathological IgG antibodies in the skin and holding great promise for future applications in human therapy.


Subject(s)
Arthus Reaction/prevention & control , Bacterial Proteins/therapeutic use , Epidermolysis Bullosa Acquisita/prevention & control , Glycoside Hydrolases/therapeutic use , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Collagen Type VII/immunology , Drug Evaluation, Preclinical , Female , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/pharmacology , Immunoglobulin G/metabolism , Mice, Inbred C57BL
18.
Infect Immun ; 84(10): 2813-23, 2016 10.
Article in English | MEDLINE | ID: mdl-27456827

ABSTRACT

Streptococcal pharyngitis is among the most common bacterial infections, but the molecular mechanisms involved remain poorly understood. Here we investigate the interactions among three major players in streptococcal pharyngitis: streptococci, plasma, and saliva. We find that saliva activates the plasma coagulation system through both the extrinsic and the intrinsic pathways, entrapping the bacteria in fibrin clots. The bacteria escape the clots by activating host plasminogen. Our results identify a potential function for the intrinsic pathway of coagulation in host defense and a corresponding role for fibrinolysis in streptococcal immune evasion.


Subject(s)
Blood Coagulation , Fibrinolysis , Host-Pathogen Interactions/physiology , Immune Evasion/physiology , Saliva/physiology , Streptococcal Infections/immunology , Streptococcus/pathogenicity , Humans , Streptococcal Infections/blood , Streptococcus/immunology
19.
Front Microbiol ; 7: 95, 2016.
Article in English | MEDLINE | ID: mdl-26903974

ABSTRACT

Streptococcus pyogenes is one of the most significant bacterial pathogens in the human population mostly causing superficial and uncomplicated infections (pharyngitis and impetigo) but also invasive and life-threatening disease. We have previously identified a virulence determinant, protein sHIP, which is secreted at higher levels by an invasive compared to a non-invasive strain of S. pyogenes. The present work presents a further characterization of the structural and functional properties of this bacterial protein. Biophysical and structural studies have shown that protein sHIP forms stable tetramers both in the crystal and in solution. The tetramers are composed of four helix-loop-helix motifs with the loop regions connecting the helices displaying a high degree of flexibility. Owing to interactions at the tetramer interface, the observed tetramer can be described as a dimer of dimers. We identified three residues at the tetramer interface (Leu84, Leu88, Tyr95), which due to largely non-polar side-chains, could be important determinants for protein oligomerization. Based on these observations, we produced a sHIP variant in which these residues were mutated to alanines. Biophysical experiments clearly indicated that the sHIP mutant appear only as dimers in solution confirming the importance of the interfacial residues for protein oligomerisation. Furthermore, we could show that the sHIP mutant interacts with intact histidine-rich glycoprotein (HRG) and the histidine-rich repeats in HRG, and inhibits their antibacterial activity to the same or even higher extent as compared to the wild type protein sHIP. We determined the crystal structure of the sHIP mutant, which, as a result of the high quality of the data, allowed us to improve the existing structural model of the protein. Finally, by employing NMR spectroscopy in solution, we generated a model for the complex between the sHIP mutant and an HRG-derived heparin-binding peptide, providing further molecular details into the interactions involving protein sHIP.

SELECTION OF CITATIONS
SEARCH DETAIL
...