Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PhytoKeys ; 193: 67-75, 2022.
Article in English | MEDLINE | ID: mdl-36760840

ABSTRACT

Townsendialemhiensis (Asteraceae) is described from the Lemhi Valley of east-central Idaho. From a genus with weak intrinsic isolating barriers, T.lemhiensis remains distinct apparently due to apomixis and to its isolation and habitat specialization on spatially limited occurrences of ashy white soils in the Lemhi Valley. Despite similarities to T.spathulata, this new species differs in its persistent pappus, fewer series of phyllaries and sericeous rather than long woolly hairs.

2.
AoB Plants ; 11(1): ply071, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30687492

ABSTRACT

We report the investigation of an Aquilegia flavescens × A. formosa population in British Columbia that is disjunct from its parents-the latter species is present locally but ecologically separated, while the former is entirely absent. To confirm hybridity, we used multivariate analysis of floral characters of field-sampled populations to ordinate phenotypes of putative hybrids in relation to those of the parental species. Microsatellite genotypes at 11 loci from 72 parental-type and putative hybrid individuals were analysed to assess evidence for admixture. Maternally inherited plastid sequences were analysed to infer the direction of hybridization and test hypotheses on the origin of the orphan hybrid population. Plants from the orphan hybrid population are on average intermediate between typical A. formosa and A. flavescens for most phenotypes examined and show evidence of genetic admixture. This population lies beyond the range of A. flavescens, but within the range of A. formosa. No pure A. flavescens individuals were observed in the vicinity, nor is this species known to occur within 200 km of the site. The hybrids share a plastid haplotype with local A. formosa populations. Alternative explanations for this pattern are evaluated. While we cannot rule out long-distance pollen dispersal followed by proliferation of hybrid genotypes, we consider the spread of an A. formosa plastid during genetic swamping of a historical A. flavescens population to be more parsimonious.

3.
Mol Phylogenet Evol ; 79: 132-68, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24747130

ABSTRACT

The Lecanoromycetes is the largest class of lichenized Fungi, and one of the most species-rich classes in the kingdom. Here we provide a multigene phylogenetic synthesis (using three ribosomal RNA-coding and two protein-coding genes) of the Lecanoromycetes based on 642 newly generated and 3329 publicly available sequences representing 1139 taxa, 317 genera, 66 families, 17 orders and five subclasses (four currently recognized: Acarosporomycetidae, Lecanoromycetidae, Ostropomycetidae, Umbilicariomycetidae; and one provisionarily recognized, 'Candelariomycetidae'). Maximum likelihood phylogenetic analyses on four multigene datasets assembled using a cumulative supermatrix approach with a progressively higher number of species and missing data (5-gene, 5+4-gene, 5+4+3-gene and 5+4+3+2-gene datasets) show that the current classification includes non-monophyletic taxa at various ranks, which need to be recircumscribed and require revisionary treatments based on denser taxon sampling and more loci. Two newly circumscribed orders (Arctomiales and Hymeneliales in the Ostropomycetidae) and three families (Ramboldiaceae and Psilolechiaceae in the Lecanorales, and Strangosporaceae in the Lecanoromycetes inc. sed.) are introduced. The potential resurrection of the families Eigleraceae and Lopadiaceae is considered here to alleviate phylogenetic and classification disparities. An overview of the photobionts associated with the main fungal lineages in the Lecanoromycetes based on available published records is provided. A revised schematic classification at the family level in the phylogenetic context of widely accepted and newly revealed relationships across Lecanoromycetes is included. The cumulative addition of taxa with an increasing amount of missing data (i.e., a cumulative supermatrix approach, starting with taxa for which sequences were available for all five targeted genes and ending with the addition of taxa for which only two genes have been sequenced) revealed relatively stable relationships for many families and orders. However, the increasing number of taxa without the addition of more loci also resulted in an expected substantial loss of phylogenetic resolving power and support (especially for deep phylogenetic relationships), potentially including the misplacements of several taxa. Future phylogenetic analyses should include additional single copy protein-coding markers in order to improve the tree of the Lecanoromycetes. As part of this study, a new module ("Hypha") of the freely available Mesquite software was developed to compare and display the internodal support values derived from this cumulative supermatrix approach.


Subject(s)
Ascomycota/classification , Phylogeny , Ascomycota/genetics , Cell Nucleus/genetics , Genes, Fungal , Genes, Mitochondrial , Likelihood Functions , Models, Genetic , RNA, Ribosomal/genetics , Sequence Alignment , Sequence Analysis, DNA , Software
4.
Mycologia ; 103(4): 755-63, 2011.
Article in English | MEDLINE | ID: mdl-21471292

ABSTRACT

The monotypic, lichen-forming genus Ingvariella originally was segregated from Diploschistes and placed within the Thelotremataceae (Ostropales) based on aspects of exciple morphology. However, the I+ hymenium and amyloid ascus wall suggest affinities to families other than the Thelotremataceae. To assess the identity of Ingvariella and to investigate its placement within the Ostropales, we inferred phylogenetic relationships of I. bispora by comparison of mtSSU rDNA and nuLSU rDNA sequences for 59 species encompassing a broad array of ostropalean fungi by means of Bayesian, maximum likelihood and weighted maximum parsimony methods. Here we report that Ingvariella is a member of the Stictidaceae, sister to the mainly saprotrophic genus Cryptodiscus. The inclusion of the first saxicolous lichen-forming fungus within this family expands the broad ecological diversity of the Stictidaceae, where saprotrophic fungi, corticicolous lichen-forming fungi and lichenized and non-lichenized conspecific taxa have been described previously. We also present new insights into the relationships among other families within the Ostropales.


Subject(s)
Ascomycota/classification , Lichens/classification , Ascomycota/cytology , Ascomycota/genetics , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Lichens/cytology , Lichens/genetics , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...