Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Evol Biol ; 34(10): 1554-1567, 2021 10.
Article in English | MEDLINE | ID: mdl-34464014

ABSTRACT

Predation risk is often invoked to explain variation in stress responses. Yet, the answers to several key questions remain elusive, including the following: (1) how predation risk influences the evolution of stress phenotypes, (2) the relative importance of environmental versus genetic factors in stress reactivity and (3) sexual dimorphism in stress physiology. To address these questions, we explored variation in stress reactivity (ventilation frequency) in a post-Pleistocene radiation of live-bearing fish, where Bahamas mosquitofish (Gambusia hubbsi) inhabit isolated blue holes that differ in predation risk. Individuals of populations coexisting with predators exhibited similar, relatively low stress reactivity as compared to low-predation populations. We suggest that this dampened stress reactivity has evolved to reduce energy expenditure in environments with frequent and intense stressors, such as piscivorous fish. Importantly, the magnitude of stress responses exhibited by fish from high-predation sites in the wild changed very little after two generations of laboratory rearing in the absence of predators. By comparison, low-predation populations exhibited greater among-population variation and larger changes subsequent to laboratory rearing. These low-predation populations appear to have evolved more dampened stress responses in blue holes with lower food availability. Moreover, females showed a lower ventilation frequency, and this sexual dimorphism was stronger in high-predation populations. This may reflect a greater premium placed on energy efficiency in live-bearing females, especially under high-predation risk where females show higher fecundities. Altogether, by demonstrating parallel adaptive divergence in stress reactivity, we highlight how energetic trade-offs may mould the evolution of the vertebrate stress response under varying predation risk and resource availability.


Subject(s)
Cyprinodontiformes , Predatory Behavior , Animals , Female , Humans , Phenotype , Sex Characteristics
2.
Toxins (Basel) ; 11(12)2019 12 01.
Article in English | MEDLINE | ID: mdl-31805656

ABSTRACT

The fresh-water cyanobacterium Microcystis is known to form blooms world-wide, and is often responsible for the production of microcystins found in lake water. Microcystins are non-ribosomal peptides with toxic effects, e.g. on vertebrates, but their function remains largely unresolved. Moreover, not all strains produce microcystins, and many different microcystin variants have been described. Here we explored the diversity of microcystin variants within Microcystis botrys, a common bloom-former in Sweden. We isolated a total of 130 strains through the duration of a bloom in eutrophic Lake Vomb, and analyzed their microcystin profiles with tandem mass spectrometry (LC-MS/MS). We found that microcystin producing (28.5%) and non-producing (71.5%) M. botrys strains, co-existed throughout the bloom. However, microcystin producing strains were more prevalent towards the end of the sampling period. Overall, 26 unique M. botrys chemotypes were identified, and while some chemotypes re-occurred, others were found only once. The M. botrys chemotypes showed considerable variation both in terms of number of microcystin variants, as well as in what combinations the variants occurred. To our knowledge, this is the first report on microcystin chemotype variation and dynamics in M. botrys. In addition, our study verifies the co-existence of microcystin and non-microcystin producing strains, and we propose that environmental conditions may be implicated in determining their composition.


Subject(s)
Microcystins/analysis , Microcystis/isolation & purification , Environmental Monitoring , Eutrophication , Lakes/chemistry , Lakes/microbiology , Seasons , Sweden
3.
R Soc Open Sci ; 6(7): 190321, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31417735

ABSTRACT

Crustacean copepods in high-latitude lakes frequently alter their pigmentation facultatively to defend themselves against prevailing threats, such as solar ultraviolet radiation (UVR) and visually oriented predators. Strong seasonality in those environments promotes phenotypic plasticity. To date, no one has investigated whether low-latitude copepods, experiencing continuous stress from UVR and predation threats, exhibit similar inducible defences. We here investigated the pigmentation levels of Bahamian 'blue hole' copepods, addressing this deficit. Examining several populations varying in predation risk, we found the lowest levels of pigmentation in the population experiencing the highest predation pressure. In a laboratory experiment, we found that, in contrast with our predictions, copepods from these relatively constant environments did show some changes in pigmentation subsequent to the removal of UVR; however, exposure to water from different predation regimes induced minor and idiosyncratic pigmentation change. Our findings suggest that low-latitude zooplankton in inland environments may exhibit reduced, but non-zero, levels of phenotypic plasticity compared with their high-latitude counterparts.

SELECTION OF CITATIONS
SEARCH DETAIL