Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 72: 186-192, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29174685

ABSTRACT

This paper analyses time (30 and 60 min) and temperature (120-190 °C) effects of intermediate thermal hydrolysis (ITHP) in a two-step anaerobic digestion of waste activated sludge (WAS) with and without wheat straw as a co-substrate. Effects were analyzed by measuring biochemical methane potential for 60 days and assessing associated kinetic and chemical data. Compared to non-treatment, ITHP increased the secondary step methane yield from 52 to 222 L CH4 kg VS-1 and from 147 to 224 L CH4 kg VS-1 for pre-digested WAS and pre-co-digested WAS respectively at an optimum of 170 °C and 30 min. The hydrolysis coefficients (khyd) increased by up to 127% following treatment. Increasing ITHP time from 30 to 60 min showed ambiguous results regarding methane yields, whilst temperature had a clear and proportional effect on the concentrations of acetic acid. The energy balances were found to be poor and dewatering to increase total solids above the values tested here is necessary for this process to be energetically feasible.


Subject(s)
Hydrolysis , Sewage , Triticum , Anaerobiosis , Kinetics , Methane
2.
Biotechnol Lett ; 39(11): 1689-1698, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28849363

ABSTRACT

OBJECTIVE: To assess the effect of small temperature increases in mesophilic sludge-based digesters in order to develop and evaluate strategies for improving the biogas production in full-scale digesters. RESULTS: Methane production was strongly affected by small temperature differences, and this result was consistent across samples from 15 full-scale digesters. The specific methane yield varied between 42 and 97.5 ml g VS-1 after 15 days of incubation at 35 °C, and improved when increasing the digester temperature to 39 °C. Only a limited quantity of additional gas was required to balance out the cost of heating and a positive energy balance was obtained. Further increases in temperature, in some cases, negatively affected the production when operated at 42 °C compared to 39 °C. CONCLUSIONS: Small temperature increases should be applied to mesophilic sludge-based digesters to optimize the biogas production and is applicable to digesters operated in the lower mesophilic temperature range.


Subject(s)
Bioreactors/microbiology , Methane/biosynthesis , Sewage/microbiology , Anaerobiosis , Biofuels , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...