Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18902, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919366

ABSTRACT

Throughout the COVID-19 pandemic, several variants of concern (VoC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have evolved, affecting the efficacy of the approved COVID-19 vaccines. To address the need for vaccines that induce strong and persistent cross-reactive neutralizing antibodies and T cell responses, we developed a prophylactic SARS-CoV-2 vaccine candidate based on our easily and rapidly adaptable plasmid DNA vaccine platform. The vaccine candidate, referred to here as VB2129, encodes a protein homodimer consisting of the receptor binding domain (RBD) from lineage B.1.351 (Beta) of SARS-CoV-2, a VoC with a severe immune profile, linked to a targeting unit (human LD78ß/CCL3L1) that binds chemokine receptors on antigen-presenting cells (APCs) and a dimerization unit (derived from the hinge and CH3 exons of human IgG3). Immunogenicity studies in mice demonstrated that the APC-targeted vaccine induced strong antibody responses to both homologous Beta RBD and heterologous RBDs derived from Wuhan, Alpha, Gamma, Delta, and Omicron BA.1 variants, as well as cross-neutralizing antibodies against these VoC. Overall, preclinical data justify the exploration of VB2129 as a potential booster vaccine that induces broader antibody- and T cell-based protection against current and future SARS-CoV-2 VoC.


Subject(s)
COVID-19 , Cancer Vaccines , Vaccines, DNA , Animals , Humans , Mice , COVID-19 Vaccines , SARS-CoV-2 , Pandemics , COVID-19/prevention & control , T-Lymphocytes , Antigen-Presenting Cells , Broadly Neutralizing Antibodies , DNA , Immunoglobulin G , Antibodies, Neutralizing , Antibodies, Viral
2.
Front Immunol ; 12: 720550, 2021.
Article in English | MEDLINE | ID: mdl-34733274

ABSTRACT

Targeted delivery of antigen to antigen presenting cells (APCs) is an efficient way to induce robust antigen-specific immune responses. Here, we present a novel DNA vaccine that targets the Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5), a leading blood-stage antigen of the human malaria pathogen, to APCs. The vaccine is designed as bivalent homodimers where each chain is composed of an amino-terminal single chain fragment variable (scFv) targeting unit specific for major histocompatibility complex class II (MHCII) expressed on APCs, and a carboxyl-terminal antigenic unit genetically linked by the dimerization unit. This vaccine format, named "Vaccibody", has previously been successfully applied for antigens from other infectious diseases including influenza and HIV, as well as for tumor antigens. Recently, the crystal structure and key functional antibody epitopes for the truncated version of PfRH5 (PfRH5ΔNL) were characterized, suggesting PfRH5ΔNL to be a promising candidate for next-generation PfRH5 vaccine design. In this study, we explored the APC-targeting strategy for a PfRH5ΔNL-containing DNA vaccine. BALB/c mice immunized with the targeted vaccine induced higher PfRH5-specific IgG1 antibody responses than those vaccinated with a non-targeted vaccine or antigen alone. The APC-targeted vaccine also efficiently induced rapid IFN-γ and IL-4 T cell responses. Furthermore, the vaccine-induced PfRH5-specific IgG showed inhibition of growth of the P. falciparum 3D7 clone parasite in vitro. Finally, sera obtained after vaccination with this targeted vaccine competed for the same epitopes as PfRH5-specific mAbs from vaccinated humans. Robust humoral responses were also induced by a similar P. vivax Duffy-binding protein (PvDBP)-containing targeted DNA vaccine. Our data highlight a novel targeted vaccine platform for the development of vaccines against blood-stage malaria.


Subject(s)
Antibodies, Protozoan/immunology , Antigen-Presenting Cells/immunology , Carrier Proteins/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , T-Lymphocytes/immunology , Vaccines, DNA/immunology , Animals , Antibodies, Neutralizing/immunology , Antibody Specificity/immunology , Antigen-Presenting Cells/metabolism , Antigens, Protozoan/immunology , Disease Models, Animal , Epitopes/immunology , Female , Gene Order , Genetic Vectors/genetics , Immunization , Malaria, Falciparum/immunology , Malaria, Falciparum/metabolism , Mice , T-Lymphocytes/metabolism
3.
Pharmaceuticals (Basel) ; 9(3)2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27399723

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, hitherto mostly known to be involved in inflammatory responses and immunoregulation. The human tslp gene gives rise to two transcription and translation variants: a long form (lfTSLP) that is induced by inflammation, and a short, constitutively-expressed form (sfTSLP), that appears to be downregulated by inflammation. The TSLP forms can be produced by a number of cell types, including epithelial and dendritic cells (DCs). lfTSLP can activate mast cells, DCs, and T cells through binding to the lfTSLP receptor (TSLPR) and has a pro-inflammatory function. In contrast, sfTSLP inhibits cytokine secretion of DCs, but the receptor mediating this effect is unknown. Our recent studies have demonstrated that both forms of TSLP display potent antimicrobial activity, exceeding that of many other known antimicrobial peptides (AMPs), with sfTSLP having the strongest effect. The AMP activity is primarily mediated by the C-terminal region of the protein and is localized within a 34-mer peptide (MKK34) that spans the C-terminal α-helical region in TSLP. Fluorescent studies of peptide-treated bacteria, electron microscopy, and liposome leakage models showed that MKK34 exerted membrane-disrupting effects comparable to those of LL-37. Expression of TSLP in skin, oral mucosa, salivary glands, and intestine is part of the defense barrier that aids in the control of both commensal and pathogenic microbes.

4.
Eur J Oral Sci ; 120(5): 395-401, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22984996

ABSTRACT

Carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs) are glycoproteins produced in epithelial, endothelial, lymphoid, and myeloid cells. Carcinoembryonic antigen-related cellular adhesion molecules mediate cell-cell contact and host-pathogen interactions. The aims of this study were to map the distribution and examine the regulation of CEACAMs in human gingival sites. Quantitative real-time PCR performed on human gingival biopsies from periodontitis sites revealed mRNA coding for CEACAM1, -5, -6, and -7. Immunohistochemistry showed that CEACAMs were not found in oral gingival epithelium, except for CEACAM5 in periodontitis. Carcinoembryonic antigen-related cellular adhesion molecules 1, 5, and 6 were present in the oral sulcular epithelium of periodontitis but not in that of healthy gingiva. In junctional epithelium, all three molecules were present in healthy gingiva, but in periodontitis only CEACAM1 and -6 were detected. Staining for CEACAM1 and -6 was also seen in the inflammatory cell infiltrate in periodontitis. No staining for CEACAM7 was found. Proinflammatory mediators, including lipopolysaccharide (LPS), tumour necrosis factor-α (TNF-α)/interleukin-1ß (IL-1ß), and interferon-γ (IFN-γ), increased the expression of CEACAM1 and CEACAM6 mRNAs in cultured human oral keratinocytes. CEACAM1 and CEACAM6 mRNAs were also strongly up-regulated upon stimulation with lysophosphatidic acid. In conclusion, the distribution of different CEACAMs was related to specific sites in the gingiva. This might reflect different functional roles in this tissue.


Subject(s)
Carcinoembryonic Antigen/metabolism , Epithelial Attachment/metabolism , Gingiva/metabolism , Keratinocytes/metabolism , Periodontitis/metabolism , Carcinoembryonic Antigen/genetics , Epithelial Attachment/immunology , Gingiva/pathology , Humans , Immunohistochemistry , Periodontitis/immunology , Periodontitis/pathology , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Transcription, Genetic , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...