Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 30(11): 2531-2544, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38593212

ABSTRACT

PURPOSE: Initially, prostate cancer responds to hormone therapy, but eventually resistance develops. Beta emitter-based prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy is approved for the treatment of metastatic castration-resistant prostate cancer. Here we introduce a targeted alpha therapy (TAT) consisting of the PSMA antibody pelgifatamab covalently linked to a macropa chelator and labeled with actinium-225 and compare its efficacy and tolerability with other TATs. EXPERIMENTAL DESIGN: The in vitro characteristics and in vivo biodistribution, antitumor efficacy, and tolerability of 225Ac-macropa-pelgifatamab (225Ac-pelgi) and other TATs were investigated in cell line- and patient-derived prostate cancer xenograft models. The antitumor efficacy of 225Ac-pelgi was also investigated in combination with the androgen receptor inhibitor darolutamide. RESULTS: Actinium-225-labeling of 225Ac-pelgi was efficient already at room temperature. Potent in vitro cytotoxicity was seen in PSMA-expressing (LNCaP, MDA-PCa-2b, and C4-2) but not in PSMA-negative (PC-3 and DU-145) cell lines. High tumor accumulation was seen for both 225Ac-pelgi and 225Ac-DOTA-pelgi in the MDA-PCa-2b xenograft model. In the C4-2 xenograft model, 225Ac-pelgi showed enhanced antitumor efficacy with a T/Cvolume (treatment/control) ratio of 0.10 compared with 225Ac-DOTA-pelgi, 225Ac-DOTA-J591, and 227Th-HOPO-pelgifatamab (227Th-pelgi; all at 300 kBq/kg) with T/Cvolume ratios of 0.37, 0.39, and 0.33, respectively. 225Ac-pelgi was less myelosuppressive than 227Th-pelgi. 225Ac-pelgi showed dose-dependent treatment efficacy in the patient-derived KuCaP-1 model and strong combination potential with darolutamide in both cell line- (22Rv1) and patient-derived (ST1273) xenograft models. CONCLUSIONS: These results provide a strong rationale to investigate 225Ac-pelgi in patients with prostate cancer. A clinical phase I study has been initiated (NCT06052306).


Subject(s)
Actinium , Alpha Particles , Antigens, Surface , Glutamate Carboxypeptidase II , Xenograft Model Antitumor Assays , Male , Humans , Animals , Mice , Cell Line, Tumor , Glutamate Carboxypeptidase II/antagonists & inhibitors , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Alpha Particles/therapeutic use , Tissue Distribution , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Radiopharmaceuticals/administration & dosage
2.
Cancers (Basel) ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37444529

ABSTRACT

Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-30% of breast cancers but has low expression in normal tissue, making it attractive for targeted alpha therapy (TAT). HER2-positive breast cancer typically metastasizes to bone, resulting in incurable disease and significant morbidity and mortality. Therefore, new strategies for HER2-targeting therapy are needed. Here, we present the preclinical in vitro and in vivo characterization of the HER2-targeted thorium-227 conjugate (HER2-TTC) TAT in various HER2-positive cancer models. In vitro, HER2-TTC showed potent cytotoxicity in various HER2-expressing cancer cell lines and increased DNA double strand break formation and the induction of cell cycle arrest in BT-474 cells. In vivo, HER2-TTC demonstrated dose-dependent antitumor efficacy in subcutaneous xenograft models. Notably, HER2-TTC also inhibited intratibial tumor growth and tumor-induced abnormal bone formation in an intratibial BT-474 mouse model that mimics breast cancer metastasized to bone. Furthermore, a match in HER2 expression levels between primary breast tumor and matched bone metastases samples from breast cancer patients was observed. These results demonstrate proof-of-concept for TAT in the treatment of patients with HER2-positive breast cancer, including cases where the tumor has metastasized to bone.

3.
Mol Cancer Ther ; 22(9): 1073-1086, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37365121

ABSTRACT

Targeted alpha therapies (TAT) are an innovative class of therapies for cancer treatment. The unique mode-of-action of TATs is the induction of deleterious DNA double-strand breaks. Difficult-to-treat cancers, such as gynecologic cancers upregulating the chemoresistance P-glycoprotein (p-gp) and overexpressing the membrane protein mesothelin (MSLN), are promising targets for TATs. Here, based on the previous encouraging findings with monotherapy, we investigated the efficacy of the mesothelin-targeted thorium-227 conjugate (MSLN-TTC) both as monotherapy and in combination with chemotherapies and antiangiogenic compounds in ovarian and cervical cancer models expressing p-gp. MSLN-TTC monotherapy showed equal cytotoxicity in vitro in p-gp-positive and -negative cancer cells, while chemotherapeutics dramatically lost activity on p-gp-positive cancer cells. In vivo, MSLN-TTC exhibited dose-dependent tumor growth inhibition with treatment/control ratios of 0.03-0.44 in various xenograft models irrespective of p-gp expression status. Furthermore, MSLN-TTC was more efficacious in p-gp-expressing tumors than chemotherapeutics. In the MSLN-expressing ST206B ovarian cancer patient-derived xenograft model, MSLN-TTC accumulated specifically in the tumor, which combined with pegylated liposomal doxorubicin (Doxil), docetaxel, bevacizumab, or regorafenib treatment induced additive-to-synergistic antitumor efficacy and substantially increased response rates compared with respective monotherapies. The combination treatments were well tolerated and only transient decreases in white and red blood cells were observed. In summary, we demonstrate that MSLN-TTC treatment shows efficacy in p-gp-expressing models of chemoresistance and has combination potential with chemo- and antiangiogenic therapies.


Subject(s)
Mesothelin , Humans , Female , GPI-Linked Proteins , Cell Line, Tumor , Drug Resistance
4.
Cancer Biother Radiopharm ; 35(7): 497-510, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32255671

ABSTRACT

Targeted α therapy (TAT) offers the potential for the targeted delivery of potent α-particle-emitting radionuclides that emit high linear energy transfer radiation. This leads to a densely ionizing radiation track over a short path. Localized radiation induces cytotoxic, difficult-to-repair, clustered DNA double-strand breaks (DSBs). To date, radium-223 (223Ra) is the only TAT approved for the treatment of patients with metastatic castration-resistant prostate cancer. Thorium-227 (227Th), the progenitor nuclide of 223Ra, offers promise as a wider-ranging alternative due to the availability of efficient chelators, such as octadentate 3,2-hydroxypyridinone (3,2-HOPO). The 3,2-HOPO chelator can be readily conjugated to a range of targeting moieties, enabling the generation of new targeted thorium-227 conjugates (TTCs). This review provides a comprehensive overview of the advances in the preclinical development of TTCs for hematological cancers, including CD22-positive B cell cancers and CD33-positive leukemia, as well as for solid tumors overexpressing renal cell cancer antigen CD70, membrane-anchored glycoprotein mesothelin in mesothelioma, prostate-specific membrane antigen in prostate cancer, and fibroblast growth factor receptor 2. As the mechanism of action for TTCs is linked to the formation of DSBs, the authors also report data supporting combinations of TTCs with inhibitors of the DNA damage response pathways, including those of the ataxia telangiectasia and Rad3-related protein, and poly-ADP ribose polymerase. Finally, emerging evidence suggests that TTCs induce immunogenic cell death through the release of danger-associated molecular patterns. Based on encouraging preclinical data, clinical studies have been initiated to investigate the safety and tolerability of TTCs in patients with various cancers.


Subject(s)
Alpha Particles/therapeutic use , Hematologic Neoplasms/radiotherapy , Immunoconjugates/therapeutic use , Radiopharmaceuticals/therapeutic use , Thorium/therapeutic use , Alarmins/metabolism , Chelating Agents/chemistry , DNA Damage/radiation effects , Hematologic Neoplasms/genetics , Hematologic Neoplasms/immunology , Hematologic Neoplasms/pathology , Humans , Immunoconjugates/chemistry , Immunogenic Cell Death/radiation effects , Precision Medicine/methods , Pyridones/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacology , Thorium/chemistry , Thorium/pharmacology , Treatment Outcome
5.
Clin Cancer Res ; 26(8): 1985-1996, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31831560

ABSTRACT

PURPOSE: Prostate-specific membrane antigen (PSMA) is an attractive target for radionuclide therapy of metastatic castration-resistant prostate cancer (mCRPC). PSMA-targeted alpha therapy (TAT) has shown early signs of activity in patients with prostate cancer refractory to beta radiation. We describe a novel, antibody-based TAT, the PSMA-targeted thorium-227 conjugate PSMA-TTC (BAY 2315497) consisting of the alpha-particle emitter thorium-227 complexed by a 3,2-HOPO chelator covalently linked to a fully human PSMA-targeting antibody. EXPERIMENTAL DESIGN: PSMA-TTC was characterized for affinity, mode of action, and cytotoxic activity in vitro. Biodistribution, pharmacokinetics, and antitumor efficacy were investigated in vivo using cell line and patient-derived xenograft (PDX) models of prostate cancer. RESULTS: PSMA-TTC was selectively internalized into PSMA-positive cells and potently induced DNA damage, cell-cycle arrest, and apoptosis in vitro. Decrease in cell viability was observed dependent on the cellular PSMA expression levels. In vivo, PSMA-TTC showed strong antitumor efficacy with T/C values of 0.01 to 0.31 after a single injection at 300 to 500 kBq/kg in subcutaneous cell line and PDX models, including models resistant to standard-of-care drugs such as enzalutamide. Furthermore, inhibition of both cancer and cancer-induced abnormal bone growth was observed in a model mimicking prostate cancer metastasized to bone. Specific tumor uptake and efficacy were demonstrated using various PSMA-TTC doses and dosing schedules. Induction of DNA double-strand breaks was identified as a key mode of action for PSMA-TTC both in vitro and in vivo. CONCLUSIONS: The strong preclinical antitumor activity of PSMA-TTC supports its clinical evaluation, and a phase I trial is ongoing in mCRPC patients (NCT03724747).


Subject(s)
Alpha Particles/therapeutic use , Antigens, Surface/metabolism , Antineoplastic Agents, Immunological/pharmacology , Drug Evaluation, Preclinical/methods , Glutamate Carboxypeptidase II/metabolism , Immunoconjugates/pharmacokinetics , Prostatic Neoplasms/radiotherapy , Thorium/pharmacology , Animals , Apoptosis , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Mice, SCID , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Radiopharmaceuticals/pharmacology , Tissue Distribution , Xenograft Model Antitumor Assays
6.
Pharmaceuticals (Basel) ; 12(4)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618864

ABSTRACT

Targeted thorium-227 conjugates (TTCs) represent a novel class of therapeutic radiopharmaceuticals for the treatment of cancer. TTCs consist of the alpha particle emitter thorium-227 complexed to a 3,2-hydroxypyridinone chelator conjugated to a tumor-targeting monoclonal antibody. The high energy and short range of the alpha particles induce potent and selective anti-tumor activity driven by the induction of DNA damage in the target cell. Methods: The efficacy of human epidermal growth factor receptor 2 (HER2)-TTC was tested in combination in vitro and in vivo with the poly ADP ribose polymerase (PARP) inhibitor (PARPi), olaparib, in the human colorectal adenocarcinoma isogenic cell line pair DLD-1 and the knockout variant DLD-1 BRCA2 -/- Results: The in vitro combination effects were determined to be synergistic in DLD-1 BRCA2 -/- and additive in DLD-1 parental cell lines. Similarly, the in vivo efficacy of the combination was determined to be synergistic only in the DLD-1 BRCA2 -/- xenograft model, with statistically significant tumor growth inhibition at a single TTC dose of 120 kBq/kg body weight (bw) and 50 mg/kg bw olaparib (daily, i.p. for 4 weeks), demonstrating comparable tumor growth inhibition to a single TTC dose of 600 kBq/kg bw. Conclusions: This study supports the further investigation of DNA damage response inhibitors in combination with TTCs as a new strategy for the effective treatment of mutation-associated cancers.

7.
Int J Radiat Oncol Biol Phys ; 105(2): 410-422, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31255687

ABSTRACT

PURPOSE: Fibroblast growth factor receptor 2 (FGFR2) has been previously reported to be overexpressed in several types of cancer, whereas the expression in normal tissue is considered to be moderate to low. Thus, FGFR2 is regarded as an attractive tumor antigen for targeted alpha therapy. This study reports the evaluation of an FGFR2-targeted thorium-227 conjugate (FGFR2-TTC, BAY 2304058) comprising an anti-FGFR2 antibody, a chelator moiety covalently conjugated to the antibody, and the alpha particle-emitting radionuclide thorium-227. FGFR2-TTC was assessed as a monotherapy and in combination with the DNA damage response inhibitor ATRi BAY 1895344. METHODS AND MATERIALS: The in vitro cytotoxicity and mechanism of action were evaluated by determining cell viability, the DNA damage response marker γH2A.X, and cell cycle analyses. The in vivo efficacy was determined using human tumor xenograft models in nude mice. RESULTS: In vitro mechanistic assays demonstrated upregulation of γH2A.X and induction of cell cycle arrest in several FGFR2-expressing cancer cell lines after treatment with FGFR2-TTC. In vivo, FGFR2-TTC significantly inhibited tumor growth at a dose of 500 kBq/kg in the xenograft models NCI-H716, SNU-16, and MFM-223. By combining FGFR2-TTC with the ATR inhibitor BAY 1895344, an increased potency was observed in vitro, as were elevated levels of γH2A.X and inhibition of FGFR2-TTC-mediated cell cycle arrest. In the MFM-223 tumor xenograft model, combination of the ATRi BAY 1895344 with FGFR2-TTC resulted in significant tumor growth inhibition at doses at which the single agents had no effect. CONCLUSIONS: The data provide a mechanism-based rationale for combining the FGFR2-TTC with the ATRi BAY 1895344 as a new therapeutic approach for treatment of FGFR2-positive tumors from different cancer indications.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Breast Neoplasms/radiotherapy , Protein Kinase Inhibitors/therapeutic use , Radioimmunotherapy/methods , Receptor, Fibroblast Growth Factor, Type 2/therapeutic use , Thorium/therapeutic use , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Chelating Agents/therapeutic use , DNA Damage , Drug Combinations , Drug Synergism , G2 Phase Cell Cycle Checkpoints/radiation effects , Histones/metabolism , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Immunoconjugates/therapeutic use , Mice , Mice, Nude , Molecular Targeted Therapy/methods , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Thorium/pharmacokinetics , Thorium Compounds/therapeutic use , Up-Regulation , Xenograft Model Antitumor Assays
8.
Clin Cancer Res ; 25(15): 4723-4734, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31064781

ABSTRACT

PURPOSE: Targeted thorium-227 conjugates (TTC) represent a new class of molecules for targeted alpha therapy (TAT). Covalent attachment of a 3,2-HOPO chelator to an antibody enables specific complexation and delivery of the alpha particle emitter thorium-227 to tumor cells. Because of the high energy and short penetration range, TAT efficiently induces double-strand DNA breaks (DSB) preferentially in the tumor cell with limited damage to the surrounding tissue. We present herein the preclinical evaluation of a mesothelin (MSLN)-targeted thorium-227 conjugate, BAY 2287411. MSLN is a GPI-anchored membrane glycoprotein overexpressed in mesothelioma, ovarian, pancreatic, lung, and breast cancers with limited expression in healthy tissue. EXPERIMENTAL DESIGN: The binding activity and radiostability of BAY 2287411 were confirmed bioanalytically. The mode-of-action and antitumor potency of BAY 2287411 were investigated in vitro and in vivo in cell line and patient-derived xenograft models of breast, colorectal, lung, ovarian, and pancreatic cancer. RESULTS: BAY 2287411 induced DSBs, apoptotic markers, and oxidative stress, leading to reduced cellular viability. Furthermore, upregulation of immunogenic cell death markers was observed. BAY 2287411 was well-tolerated and demonstrated significant antitumor efficacy when administered via single or multiple dosing regimens in vivo. In addition, significant survival benefit was observed in a disseminated lung cancer model. Biodistribution studies showed specific uptake and retention of BAY 2287411 in tumors and enabled the development of a mechanistic pharmacokinetic/pharmacodynamic model to describe the preclinical data. CONCLUSIONS: These promising preclinical results supported the transition of BAY 2287411 into a clinical phase I program in mesothelioma and ovarian cancer patients (NCT03507452).


Subject(s)
Alpha Particles/therapeutic use , Drug Evaluation, Preclinical/methods , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/pharmacology , Neoplasms/drug therapy , Radiopharmaceuticals/pharmacology , Thorium/pharmacology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival , Female , GPI-Linked Proteins/immunology , GPI-Linked Proteins/pharmacokinetics , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mesothelin , Mesothelioma/drug therapy , Mesothelioma/metabolism , Mesothelioma/pathology , Mesothelioma, Malignant , Mice , Mice, Nude , Neoplasms/metabolism , Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Radiopharmaceuticals/pharmacokinetics , Thorium/administration & dosage , Thorium/chemistry , Thorium/pharmacokinetics , Tissue Distribution , Xenograft Model Antitumor Assays
9.
J Nucl Med ; 60(9): 1293-1300, 2019 09.
Article in English | MEDLINE | ID: mdl-30850485

ABSTRACT

Targeted 227Th conjugates (TTCs) represent a new class of therapeutic radiopharmaceuticals for targeted α-therapy. They comprise the α-emitter 227Th complexed to a 3,2-hydroxypyridinone chelator conjugated to a tumor-targeting monoclonal antibody. The high energy and short range of the α-particles induce antitumor activity, driven by the induction of complex DNA double-strand breaks. We hypothesized that blocking the DNA damage response (DDR) pathway should further sensitize cancer cells by inhibiting DNA repair, thereby increasing the response to TTCs. Methods: This article reports the evaluation of the mesothelin (MSLN)-TTC conjugate (BAY 2287411) in combination with several DDR inhibitors, each of them blocking different DDR pathway enzymes. MSLN is a validated cancer target known to be overexpressed in mesothelioma, ovarian, lung, breast, and pancreatic cancer, with low expression in normal tissue. In vitro cytotoxicity experiments were performed on cancer cell lines by combining the MSLN-TTC with inhibitors of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related (ATR), DNA-dependent protein kinase, and poly[adenosine diphosphate ribose] polymerase (PARP) 1/2. Further, we evaluated the antitumor efficacy of the MSLN-TTC in combination with DDR inhibitors in human ovarian cancer xenograft models. Results: Synergistic activity was observed in vitro for all tested inhibitors (inhibitors are denoted herein by the suffix "i") when combined with MSLN-TTC. ATRi and PARPi appeared to induce the strongest increase in potency. Further, in vivo antitumor efficacy of the MSLN-TTC in combination with ATRi or PARPi was investigated in the OVCAR-3 and OVCAR-8 xenograft models in nude mice, demonstrating synergistic antitumor activity for the ATRi combination at doses demonstrated to be nonefficacious when administered as monotherapy. Conclusion: The presented data support the mechanism-based rationale for combining the MSLN-TTC with DDR inhibitors as new treatment strategies in MSLN-positive ovarian cancer.


Subject(s)
DNA Damage/drug effects , GPI-Linked Proteins/pharmacology , Ovarian Neoplasms/diagnostic imaging , Radiopharmaceuticals/pharmacology , Thorium/pharmacology , Alpha Particles , Animals , Antineoplastic Agents , Apoptosis , Cell Line, Tumor , Chelating Agents/pharmacology , DNA Repair , Female , Heterografts , Humans , Mesothelin , Mice , Mice, Nude , Neoplasm Transplantation , Pyridones/pharmacology , Tissue Distribution
10.
Oncotarget ; 8(34): 56311-56326, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28915592

ABSTRACT

The cell surface receptor CD70 has been previously reported as a promising target for B-cell lymphomas and several solid cancers including renal cell carcinoma. We describe herein the characterization and efficacy of a novel CD70 targeted thorium-227 conjugate (CD70-TTC) comprising the combination of the three components, a CD70 targeting antibody, a chelator moiety and the short-range, high-energy alpha-emitting radionuclide thorium-227 (227Th). In vitro analysis demonstrated that the CD70-TTC retained binding affinity to its target and displayed potent and specific cytotoxicity compared to an isotype control-TTC. A biodistribution study in subcutaneous tumor-bearing nude mice using the human renal cell carcinoma cell line 786-O demonstrated significant uptake and retention with 122 ± 42% of the injected dose of 227Th per gram (% ID/g) remaining in the tumor seven days post dose administration compared to only 3% ID/g for the isotype control-TTC. Tumor accumulation correlated with a dose dependent and statistically significant inhibition in tumor growth compared to vehicle and isotype control-TTC groups at radioactivity doses as low as 50 kBq/kg. The CD70-TTC was well tolerated as evidenced by only modest changes in hematology and normal gain in body weight of the mice. To our knowledge, this is the first report describing molecular targeting of CD70 expressing tumors using a targeted alpha-therapy (TAT).

11.
Mol Cancer Ther ; 15(10): 2422-2431, 2016 10.
Article in English | MEDLINE | ID: mdl-27535972

ABSTRACT

The clinical efficacy of the first approved alpha pharmaceutical, Xofigo (radium-223 dichloride, 223RaCl2), has stimulated significant interest in the development of new alpha-particle emitting drugs in oncology. Unlike radium-223 (223Ra), the parent radionuclide thorium-227 (227Th) is able to form highly stable chelator complexes and is therefore amenable to targeted radioimmunotherapy. We describe the preparation and use of a CD33-targeted thorium-227 conjugate (CD33-TTC), which binds to the sialic acid receptor CD33 for the treatment of acute myeloid leukemia (AML). A chelator was conjugated to the CD33-targeting antibody lintuzumab via amide bonds, enabling radiolabeling with the alpha-emitter 227Th. The CD33-TTC induced in vitro cytotoxicity on CD33-positive cells, independent of multiple drug resistance (MDR) phenotype. After exposure to CD33-TTC, cells accumulated DNA double-strand breaks and were arrested in the G2 phase of the cell cycle. In vivo, the CD33-TTC demonstrated antitumor activity in a subcutaneous xenograft mouse model using HL-60 cells at a single dose regimen. Dose-dependent significant survival benefit was further demonstrated in a disseminated mouse tumor model after single dose injection or administered as a fractionated dose. The data presented support the further development of the CD33-TTC as a novel alpha pharmaceutical for the treatment of AML. Mol Cancer Ther; 15(10); 2422-31. ©2016 AACR.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents/pharmacology , Immunoconjugates/pharmacology , Leukemia, Myeloid, Acute/metabolism , Sialic Acid Binding Ig-like Lectin 3/antagonists & inhibitors , Thorium , Animals , Antineoplastic Agents/chemistry , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Humans , Immunoconjugates/chemistry , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Mice , Radioimmunotherapy , Survival Analysis , Thorium/chemistry , Tissue Distribution , Xenograft Model Antitumor Assays
12.
Bioorg Med Chem Lett ; 26(17): 4318-21, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27476138

ABSTRACT

We present the synthesis and characterization of a highly efficient thorium chelator, derived from the octadentate hydroxypyridinone class of compounds. The chelator forms extremely stable complexes with fast formation rates in the presence of Th-227 (ambient temperature, 20min). In addition, mouse biodistribution data are provided which indicate rapid hepatobiliary excretion route of the chelator which, together with low bone uptake, supports the stability of the complex in vivo. The carboxylic acid group may be readily activated for conjugation through the ɛ-amino groups of lysine residues in biomolecules such as antibodies. This chelator is a critical component of a new class of Targeted Thorium Conjugates (TTCs) currently under development in the field of oncology.


Subject(s)
Chelating Agents/chemistry , Thorium/chemistry , Animals , Benzofurans , Chelating Agents/chemical synthesis , Chelating Agents/pharmacokinetics , Chelating Agents/pharmacology , Female , Heart/drug effects , Isotopes , Lung/drug effects , Mice , Molecular Structure , Quinolines , Thorium/pharmacokinetics , Thorium/pharmacology
13.
Nat Med ; 21(8): 955-61, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26168295

ABSTRACT

Colon cancer prevention currently relies on colonoscopy using white light to detect and remove polyps, but small and flat polyps are difficult to detect and frequently missed when using this technique. Fluorescence colonoscopy combined with a fluorescent probe specific for a polyp biomarker may improve polyp detection. Here we describe GE-137, a water-soluble probe consisting of a 26-amino acid cyclic peptide that binds the human tyrosine kinase c-Met conjugated to a fluorescent cyanine dye. Intravenous administration of GE-137 leads to its accumulation specifically in c-Met-expressing tumors in mice, and it is safe and well tolerated in humans. Fluorescence colonoscopy in patients receiving intravenous GE-137 enabled visualization of all neoplastic polyps that were visible with white light (38), as well as an additional nine polyps that were not visible with white light. This first-in-human pilot study shows that molecular imaging using an intravenous fluorescent agent specific for c-Met is feasible and safe, and that it may enable the detection of polyps missed by other techniques.


Subject(s)
Colorectal Neoplasms/diagnosis , Intestinal Polyps/diagnosis , Peptides, Cyclic/drug effects , Proto-Oncogene Proteins c-met/analysis , Amino Acid Sequence , Animals , Cell Line, Tumor , Female , Fluorescence , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data
14.
J Histochem Cytochem ; 61(1): 19-30, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23092790

ABSTRACT

The ability to visualize myelin is important in the diagnosis of demyelinating disorders and the detection of myelin-containing nerves during surgery. The development of myelin-selective imaging agents requires that a defined target for these agents be identified and that a robust assay against the target be developed to allow for assessment of structure-activity relationships. We describe an immunohistochemical analysis and a fluorescence polarization binding assay using purified myelin basic protein (MBP) that provides quantitative evidence that MBP is the molecular binding partner of previously described myelin-selective fluorescent dyes such as BMB, GE3082, and GE3111.


Subject(s)
Myelin Basic Protein/metabolism , Aniline Compounds , Animals , Corpus Striatum/metabolism , Fluorescence Polarization , Fluorescent Dyes , Immunohistochemistry , Ligands , Mice , Myelin Basic Protein/chemistry , Protein Binding , Stilbenes , Sulfonamides , Trigeminal Nerve/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...