Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 763: 144034, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33360959

ABSTRACT

Biochars are considered potential sustainable sorbents to reduce the leaching of per- and polyfluoroalkyl substances (PFAS) from contaminated soils. However, biochar characteristics must probably be optimized to achieve useful sorption capacity. In the present work, eight waste timber biochars were produced, including biochars activated to different degrees, at different temperatures, and using both steam and CO2. In laboratory batch experiments, the eight biochars were amended to soil samples from two different horizons, with low and high total organic carbon (TOC, 1.6% and 34.2%, respectively), of a heavily PFAS-contaminated soil (1200-3800 µg kg-1 PFAStot), at varying doses (0, 0.1, 0.5, 1.0 and 5.0%). With a 5% amendment to the low-TOC soil, all eight biochars resulted in strongly reduced leachate PFAS concentrations (by 98-100%). At the same amendment dose in the high-TOC soil, leachate concentration reductions were more modest (23-100%). This was likely due to a strong PFAS-sorption to the high-TOC soil itself, as well as biochar pore clogging in the presence of abundant organic matter, resulting in fewer sorption sites available to PFAS. Reduction in PFAS leaching was proportional to the degree of activation and activation temperature. Thus, lower amendment doses of activated biochars were needed to reduce PFAS leaching to the same level as with the non-activated biochar. Activation however, came at a tradeoff with biochar yield. Furthermore, the adsorption ability of these biochars increased proportionally with PFAS-fluorocarbon chain length, demonstrating the role of hydrophobic interactions in reduction of PFAS leaching. Development of internal surface area and porosity was proposed as the main factor causing the improved performance of activated biochars. This study shows that woody residues such as waste timber can be used to produce effective sorbents for the remediation of PFAS-contaminated soil. It also highlights the desirability of sorbate and matrix-specific optimization of biochar production.


Subject(s)
Fluorocarbons , Soil Pollutants , Adsorption , Charcoal , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...