Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 51(1): 42-50, 2019 01.
Article in English | MEDLINE | ID: mdl-30455415

ABSTRACT

Bicuspid aortic valve (BAV) is a common congenital heart defect (population incidence, 1-2%)1-3 that frequently presents with ascending aortic aneurysm (AscAA)4. BAV/AscAA shows autosomal dominant inheritance with incomplete penetrance and male predominance. Causative gene mutations (for example, NOTCH1, SMAD6) are known for ≤1% of nonsyndromic BAV cases with and without AscAA5-8, impeding mechanistic insight and development of therapeutic strategies. Here, we report the identification of variants in ROBO4 (which encodes a factor known to contribute to endothelial performance) that segregate with disease in two families. Targeted sequencing of ROBO4 showed enrichment for rare variants in BAV/AscAA probands compared with controls. Targeted silencing of ROBO4 or mutant ROBO4 expression in endothelial cell lines results in impaired barrier function and a synthetic repertoire suggestive of endothelial-to-mesenchymal transition. This is consistent with BAV/AscAA-associated findings in patients and in animal models deficient for ROBO4. These data identify a novel endothelial etiology for this common human disease phenotype.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Aortic Valve/abnormalities , Heart Valve Diseases/genetics , Mutation/genetics , Receptors, Cell Surface/genetics , Animals , Bicuspid Aortic Valve Disease , Cells, Cultured , Disease Models, Animal , Endothelial Cells/physiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Zebrafish
2.
Atheroscler Suppl ; 35: e6-e13, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30172576

ABSTRACT

Cellular and molecular mechanisms of thoracic aortic aneurysm are still not clear and therapeutic approaches are mostly absent. The role of endothelial cells in aortic wall integrity is emerging from recent studies. Although Notch pathway ensures endothelial development and integrity, and NOTCH1 mutations have been associated with thoracic aortic aneurysms, the role of this pathway in aneurysm remains elusive. The purpose of the present work was to study functions of Notch genes in endothelial cells of patients with sporadic thoracic aortic aneurysm. Aortic endothelial cells were isolated from aortic tissue of patients with thoracic aortic aneurysm and healthy donors. Gene expression of Notch and related BMP and WNT/ß-catenin pathways was estimated by qPCR; WNT/ß-catenin signaling was studied by TCF-luciferase reporter. To study the stress-response the cells were subjected to laminar shear stress and the expression of corresponding genes was estimated by qPCR. Analyses of mRNA expression of Notch genes, Notch target genes and Notch related pathways showed that endothelial cells of aneurysm patients have dysregulated Notch/BMP/WNT pathways compared to donor cells. Activity of Wnt pathway was significantly elevated in endothelial cells of the patients. Cells from patients had attenuated activation of DLL4, SNAIL1, DKK1 and BMP2 in response to shear stress. In conclusion endothelial cells of the patients with thoracic aortic aneurysm have dysregulated Notch, BMP and WNT/ß-catenin related signaling. Shear stress-response and cross-talk between Notch and Wnt pathways that normally ensures aortic integrity and resistance of endothelial cells to stress is impaired in aneurysmal patients.


Subject(s)
Aorta, Thoracic/metabolism , Aortic Aneurysm, Thoracic/metabolism , Bone Morphogenetic Protein 2/metabolism , Endothelial Cells/metabolism , Receptors, Notch/metabolism , Wnt Signaling Pathway , Adaptor Proteins, Signal Transducing , Aged , Aged, 80 and over , Aorta, Thoracic/pathology , Aorta, Thoracic/physiopathology , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Aortic Aneurysm, Thoracic/physiopathology , Bone Morphogenetic Protein 2/genetics , Calcium-Binding Proteins , Cells, Cultured , Endothelial Cells/pathology , Female , Gene Expression Regulation , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mechanotransduction, Cellular , Middle Aged , Receptors, Notch/genetics , Regional Blood Flow , Snail Family Transcription Factors/metabolism , Stress, Mechanical , Wnt Signaling Pathway/genetics
3.
Int J Cardiol Heart Vasc ; 11: 74-79, 2016 Jun.
Article in English | MEDLINE | ID: mdl-28616529

ABSTRACT

OBJECTIVE: A bicuspid aortic valve (BAV) is associated with accelerated aortic valve disease (AVD) and abnormalities in aortic elasticity. We investigated the intima-media thickness of the descending aorta (AoIMT) in patients with AVD with or without an ascending aortic aneurysm (AscAA), in relation to BAV versus tricuspid aortic valve (TAV) phenotype, type of valve disease, cardiovascular risk factors, and single-nucleotide polymorphisms (SNPs) with a known association with carotid IMT. METHODS AND RESULTS: 368 patients (210 with BAV, 158 with TAV,); mean age 64 ± 13 years) were examined using transesophageal echocardiography (TEE) before valvular and/or aortic surgery. No patient had a coronary disease (CAD). The AoIMT was measured on short-axis TEE images of the descending aorta using a semi-automated edge-detection technique. AoIMT was univariately (P < 0.05) related to age, blood pressure, smoking, creatinine, highly sensitive C-reactive protein, HDL, valve hemodynamics and BAV. In the TAV subgroup it was also associated with the rs200991 SNP. Using multivariate regression analysis, age was the main determinant for AoIMT (P < 0.001), followed by male gender (P = 0.02), BAV was no longer a significant predictor of AoIMT. AoIMT was still related to the rs200991 SNP in TAV (P = 0.034), and to creatinine in BAV (P = 0.019), when other variables were accounted for. CONCLUSIONS: Intima-media thickness of the descending aorta is not affected by aortic valve morphology (BAV/TAV); age is the main determinant of AoIMT. Genetic markers (SNPs) known to influence IMT in the carotid artery seem to correlate to IMT in the descending aorta only in patients with TAV.

4.
Atherosclerosis ; 196(2): 514-22, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17606262

ABSTRACT

OBJECTIVES: Remodeling of extracellular matrix (ECM) plays an important role in inflammatory disorders such as atherosclerosis. ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) is a recently described family of proteinases that is able to degrade the ECM proteins aggrecan and versican expressed in blood vessels. The purpose of the present study was to analyze the expression and regulation of several ADAMTSs before and after macrophage differentiation and after stimulation with IFN-gamma, IL-1beta and TNF-alpha. ADAMTS expression was also examined during atherosclerosis development in mice and in human atherosclerotic plaques. METHODS AND RESULTS: Real time RTPCR showed that, of the nine different ADAMTS members examined, only ADAMTS-4 and -8 were induced during monocyte to macrophage differentiation, which was also seen at protein level. Macrophage expression of ADAMTS-4, -7, -8 and -9 mRNA were enhanced upon stimulation with IFN-gamma or TNF-alpha. Furthermore, immunohistochemical analyses revealed that ADAMTS-4 and -8 were expressed in macrophage rich areas of human atherosclerotic carotid plaques and coronary unstable plaques. In addition, ADAMTS-4 expression was upregulated during the development of atherosclerosis in LDLR(-/-)ApoB(100/100) mice. Whereas ADAMTS-4 expression was low in non-atherosclerotic aortas, it was significantly higher in aortas from 30-40-week old atherosclerotic animals. CONCLUSION: The present study suggests that ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of atherosclerotic plaques. This is the first study associating ADAMTS-4 and -8 expression with atherosclerosis. However, further experiments are required to understand the physiological and pathological functions of ADAMTS in the vascular wall, and tools to measure ADAMTS activity need to be developed.


Subject(s)
ADAM Proteins/biosynthesis , Atherosclerosis/enzymology , Macrophages/metabolism , Procollagen N-Endopeptidase/biosynthesis , ADAMTS Proteins , ADAMTS4 Protein , Animals , Atherosclerosis/pathology , Carotid Arteries/metabolism , Carotid Arteries/pathology , Cell Differentiation , Cells, Cultured , Gene Expression Regulation, Enzymologic , Humans , Interferon-gamma/pharmacology , Mice , Monocytes/cytology , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/pharmacology , Up-Regulation
5.
J Lipid Res ; 45(9): 1768-76, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15210849

ABSTRACT

Lipid-laden monocyte/macrophages in atherosclerotic plaques can produce a range of proteinases capable of degrading components of the plaque extracellular matrix, an event that may weaken plaques, rendering them vulnerable to rupture. The effects of differentiation from monocytes to macrophages and exposure to mildly oxidized LDL (Ox-LDL) on the expression of a range of proteinases and their inhibitors were assessed in the human THP-1 cell line. Of 56 proteinases/inhibitors investigated, 17 were upregulated during macrophage differentiation, including several matrix metalloproteinases (MMPs) and cathepsins along with their native inhibitors. Similarly, expression of matrix-degrading proteinases was also increased during differentiation of human primary macrophages. In conjunction, the proteolytic capacity of the cells increased, as assessed by substrate zymography. Subsequent exposure of differentiated THP-1 cells to mildly Ox-LDL increased the expression of a control gene (adipocyte lipid binding protein) and increased the activity of nuclear factor-kappaB and activator protein-1 in serum-free conditions but did not significantly affect the expression of any of the proteinases or inhibitors investigated. These results indicate that in this model macrophage differentiation, rather than exposure to Ox-LDL, has a more important effect on the expression of genes involved in extracellular matrix remodeling.


Subject(s)
Cell Differentiation/physiology , Lipoproteins, LDL/pharmacology , Macrophages/physiology , Monocytes/physiology , Peptide Fragments/metabolism , Peptide Hydrolases/metabolism , Cell Line , Humans , Lipid Metabolism , Macrophages/cytology , Macrophages/drug effects , Monocytes/cytology , Monocytes/drug effects , NF-kappa B/drug effects , NF-kappa B/metabolism , Peptide Fragments/drug effects , Peptide Hydrolases/drug effects , Transcription Factor AP-1/drug effects , Transcription Factor AP-1/metabolism
6.
Matrix Biol ; 22(7): 557-60, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14996435

ABSTRACT

Endothelial expression of matrix metalloproteinases has been implicated in angiogenesis and endothelial cell proliferation. Recently, it has been shown that high-density lipoproteins (HDLs) promote angiogenesis. In the present study, we investigated the effects of native HDLs on the expression of several proteases and their inhibitors in human umbilical vein endothelial cells. We show that ADAMTS-1 (a disintegrin and metalloproteinase with thrombospondin motif) was potently induced by incubation with lipopolysaccharide or tumor necrosis factor-alpha and that the expression was significantly reduced in the presence of HDL subfraction 3. Since ADAMTS-1 has recently been shown to inhibit endothelial cell proliferation, the result of the present work may represent a new mechanism by which HDL could have a positive effect on endothelial cell and vascular wall function.


Subject(s)
Disintegrins/antagonists & inhibitors , Endothelial Cells/metabolism , Lipopolysaccharides/pharmacology , Lipoproteins, HDL/physiology , Metalloendopeptidases/antagonists & inhibitors , Tumor Necrosis Factor-alpha/pharmacology , ADAM Proteins , ADAMTS1 Protein , Cells, Cultured , Disintegrins/genetics , Gene Expression/drug effects , Humans , Lipoproteins, HDL/pharmacology , Lipoproteins, HDL3 , Metalloendopeptidases/genetics , Metalloproteases/metabolism , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...