Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Conserv Biol ; 34(2): 482-493, 2020 04.
Article in English | MEDLINE | ID: mdl-31310350

ABSTRACT

Population viability analysis (PVA) is a powerful conservation tool, but it remains impractical for many species, particularly species with multiple, broadly distributed populations for which collecting suitable data can be challenging. A recently developed method of multiple-population viability analysis (MPVA), however, addresses many limitations of traditional PVA. We built on previous development of MPVA for Lahontan cutthroat trout (LCT) (Oncorhynchus clarkii henshawi), a species listed under the U.S. Endangered Species Act, that is distributed broadly across habitat fragments in the Great Basin (U.S.A.). We simulated potential management scenarios and assessed their effects on population sizes and extinction risks in 211 streams, where LCT exist or may be reintroduced. Conservation populations (those managed for recovery) tended to have lower extinction risks than nonconservation populations (mean = 19.8% vs. 52.7%), but not always. Active management or reprioritization may be warranted in some cases. Eliminating non-native trout had a strong positive effect on overall carrying capacities for LCT populations but often did not translate into lower extinction risks unless simulations also reduced associated stochasticity (to the mean for populations without non-native trout). Sixty fish or 5-10 fish/km was the minimum reintroduction number and density, respectively, that provided near-maximum reintroduction success. This modeling framework provided crucial insights and empirical justification for conservation planning and specific adaptive management actions for this threatened species. More broadly, MPVA is applicable to a wide range of species exhibiting geographic rarity and limited availability of abundance data and greatly extends the potential use of empirical PVA for conservation assessment and planning.


Aplicación de un Análisis de Viabilidad Multi-Poblacional para Evaluar Alternativas de Recuperación de Especies Resumen El análisis de viabilidad poblacional (AVP) es una herramienta poderosa de conservación, que desafortunadamente sigue siendo impráctica para muchas especies, en particular para aquellas con poblaciones múltiples distribuidas ampliamente, para las cuales puede ser un reto la recolección de datos apropiados. Sin embargo, un método recientemente desarrollado de análisis de viabilidad multi-poblacional (AVMP) aborda muchas de las limitaciones de los AVP tradicionales. Partimos del desarrollo previo de un AVMP para la trucha degollada lahontana (LCT, en inglés) (Oncorhynchus clarkii henshawi), una especie enlistada bajo el Acta de Especies en Peligro de los Estados Unidos, la cual está distribuida ampliamente a lo largo de los fragmentos de hábitat que se encuentran en la Gran Cuenca (E.U.A.). Simulamos los escenarios potenciales de manejo y evaluamos sus efectos sobre el tamaño de las poblaciones y los riesgos de extinción en 211 arroyos en donde existe la LCT o en donde podría ser reintroducida. Las poblaciones de conservación (aquellas manejadas para su recuperación) tuvieron una tendencia hacia un riesgo de extinción más bajo que las poblaciones sin conservación (media = 19.8% vs. 52.7%), pero no en todos los casos. El manejo activo o la repriorización podrían ser justificadas en algunos casos. La eliminación de las truchas no nativas tuvo un fuerte efecto positivo generalizado sobre las capacidades de carga de las poblaciones de LCT, aunque frecuentemente esto no se transformó en un riesgo de extinción más bajo a menos que las simulaciones también redujeran la estocasticidad asociada (para la media de las poblaciones sin truchas no nativas). Para proporcionar un éxito de reintroducción cercano al máximo, el número mínimo de reintroducción debió ser de 60 peces o una densidad de 5-10 peces/km. Este marco de trabajo para el modelo proporcionó una percepción muy importante y una justificación empírica para la planeación de la conservación y para las acciones de manejo adaptativo para esta especie amenazada. En términos más generales, el AVMP puede aplicarse a una gama amplia de especies que exhiban una rareza geográfica y una disponibilidad limitada de datos de abundancia, además de que expande enormemente el uso potencial de AVP empíricos para la evaluación y planeación de la conservación.


Subject(s)
Conservation of Natural Resources , Endangered Species , Animals , Ecosystem , Rivers , Trout
2.
Ecology ; 100(1): e02538, 2019 01.
Article in English | MEDLINE | ID: mdl-30489639

ABSTRACT

Population viability analysis (PVA) uses concepts from theoretical ecology to provide a powerful tool for quantitative estimates of population dynamics and extinction risks. However, conventional statistical PVA requires long-term data from every population of interest, whereas many species of concern exist in multiple isolated populations that are only monitored occasionally. We present a hierarchical multi-population viability analysis model that increases inference power from sparse data by sharing information among populations to assess extinction risks while accounting for incomplete detection and sampling biases with explicit observation and sampling sub-models. We present a case study in which we customized this model for historical population monitoring data (1985-2015) from federally threatened Lahontan cutthroat trout populations in the Great Basin, USA. Data were counts of fish captured during backpack electrofishing surveys from locations associated with 155 isolated populations. Some surveys (25%) included multi-pass removal sampling, which provided valuable information about capture efficiency. GIS and remote sensing were used to estimate August stream temperatures, peak flows, and riparian vegetation condition in each population each year. Field data were used to derive an annual index of nonnative trout densities. Results indicated that population growth rates were higher in colder streams and that nonnative trout reduced carrying capacities of native trout. Extinction risks increased with more environmental stochasticity and were also related to population extent, water temperatures, and nonnative densities. We developed a graphical user interface to interact with the fitted model results and to simulate future habitat scenarios and management actions to assess their influence on extinction risks in each population. Hierarchical multi-population viability analysis bridges the gap between site-level field observations and population-level processes, making effective use of existing datasets to support management decisions with robust estimates of population dynamics, extinction risks, and uncertainties.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Population Dynamics , Rivers , Trout
SELECTION OF CITATIONS
SEARCH DETAIL
...