Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674956

ABSTRACT

Several composites based on poly(3-hydroxybutyrate) (PHB) and mesoporous SBA-15 silica were prepared by solvent-casting followed by a further stage of compression molding. The thermal stability, phase transitions and crystalline details of these composites were studied, paying special attention to the confinement of the PHB polymeric chains into the mesopores of the silica. For that, differential scanning calorimetry (DSC) and real-time variable-temperature X-ray scattering at small angles (SAXS) were performed. Confinement was stated first by the existence of a small endotherm at temperatures around 20 °C below the main melting or crystallization peak, being later confirmed by a notable discontinuity in the intensity of the main (100) diffraction from the mesoporous silica observed through SAXS experiments, which is related to the change in the scattering contrast before and after the crystallization or melting of the polymer chains. Furthermore, the usual α modification of PHB was developed in all samples. Finally, a preliminary investigation of mechanical and relaxation parameters was carried out through dynamic-mechanical thermal analysis (DMTA). The results show, in the temperature interval analyzed, two relaxations, named α and ß (the latest related to the glass transition) in order of decreasing temperatures, in all specimens. The role of silica as a filler is mainly observed at temperatures higher than the glass transition. In such cases, stiffness is dependent on SBA-15 content.

2.
Molecules ; 28(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298738

ABSTRACT

In this study, nanocomposites based on polypropylene are synthesized by the in situ polymerization of propene in the presence of mesoporous SBA-15 silica, which acts as a carrier of the catalytic system (zirconocene as catalyst and methylaluminoxane as cocatalyst). The protocol for the immobilization and attainment of hybrid SBA-15 particles involves a pre-stage of contact between the catalyst with cocatalyst before their final functionalization. Two zirconocene catalysts are tested in order to attain materials with different microstructural characteristics, molar masses and regioregularities of chains. Some polypropylene chains are able to be accommodated within the silica mesostructure of these composites. Thus, an endothermic event of small intensity appears during heating calorimetric experiments at approximately 105 °C. The existence of these polypropylene crystals, confined within the nanometric channels of silica, is corroborated by SAXS measurements obtained via the change in the intensity and position of the first-order diffraction of SBA-15. The incorporation of silica also has a very significant effect on the rheological response of the resultant materials, leading to important variations in various magnitudes, such as the shear storage modulus, viscosity and δ angle, when a comparison is established with the corresponding neat iPP matrices. Rheological percolation is reached, thus demonstrating the role of SBA-15 particles as filler, in addition to the supporting role that they exert during the polymerizations.


Subject(s)
Nanocomposites , Polypropylenes , Polymerization , Polypropylenes/chemistry , Metallocenes , Molecular Weight , Scattering, Small Angle , X-Ray Diffraction , Nanocomposites/chemistry , Silicon Dioxide/chemistry
3.
Polymers (Basel) ; 15(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37177226

ABSTRACT

Composites based on an L-rich poly(lactic acid) (PLLA) and MCM-41, either neat or modified with a silver (MCM-41@Ag), are achieved by solvent casting, being next processed by compression molding. Ag is mainly embedded as nanowires within the hybrid MCM-41@Ag particles, enabling its antimicrobial character. In these composites, the PLLA thermal stability, nucleation efficiency, and mechanical response are dependent on the MCM-41 nature and, to a lesser extent, on its content. Thus, differences in transitions of the PLLA matrix are noticed during cooling at 10 °C/min and in the subsequent heating when composites with neat or modified MCM-41 are compared. A very remarkable nucleation effect is played by pristine MCM-41, being inferior when MCM-41@Ag is incorporated into the PLLA. Wide angle X-ray scattering (WAXS) measurements using synchrotron radiation and performed under variable-temperature conditions in the composites containing MCM-41@Ag indicate that during cold crystallization, the disordered α' polymorph is initially formed, but it rapidly transforms into ordered α crystals. A long spacing peak, clearly seen in pure PLLA, appears as a small shoulder in PLLAMCM@Ag4 and is undetectable in PLLAMCM@Ag9 and PLLAMCM@Ag20. Furthermore, an increase in MH with the silica content is found in the two sets of composites, the higher MH values being observed in the family of PLLA and MCM-41@Ag. Finally, remarkable antimicrobial features are noticeable in the composites with MCM-41@Ag since this modified silica transfers its biocidal characteristics into the PLLA composites.

4.
Polymers (Basel) ; 15(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36987271

ABSTRACT

Different amounts of carbon nanotubes (CNT) have been incorporated in materials based on poly(vinylidene fluoride) (PVDF) by solvent blending followed by their further precipitation. Final processing was performed by compression molding. The morphological aspects and crystalline characteristics have been examined, additionally exploring in these nanocomposites the common routes described in the pristine PVDF to induce the ß polymorph. This polar ß phase has been found to be promoted by the simple inclusion of CNT. Therefore, coexistence of the α and ß lattices occurs for the analyzed materials. The real-time variable-temperature X-ray diffraction measurements with synchrotron radiation at a wide angle have undoubtedly allowed us to observe the presence of the two polymorphs and determine the melting temperature of both crystalline modifications. Furthermore, the CNT plays a nucleating role in the PVDF crystallization, and also acts as reinforcement, increasing the stiffness of the nanocomposites. Moreover, the mobility within the amorphous and crystalline PVDF regions is found to change with the CNT content. Finally, the presence of CNT leads to a very remarkable increase in the conductivity parameter, in such a way that the transition from insulator to electrical conductor is reached in these nanocomposites at a percolation threshold ranging from 1 to 2 wt.%, leading to the excellent value of conductivity of 0.05 S/cm in the material with the highest content in CNT (8 wt.%).

5.
Polymers (Basel) ; 15(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36771925

ABSTRACT

Different materials, based on an L-rich polylactide (PLA) as matrix, acetyl tri-n-butyl citrate (ATBC) as plasticizer, and mesoporous Mobile Crystalline Material.41 (MCM-41) particles as nucleating agent, were attained by melt extrusion. These materials are constituted by (a) binary blends of PLA and ATBC with different contents of the latest; (b) a dual compound of PLA and a given amount of MCM-41 silica (5 wt.%); and (c) ternary composites that include PLA, ATBC at several compositions and mesoporous MCM-41 at 5 wt.%. Influence of the incorporation of the plasticizer and nucleating particles has been comprehensively analyzed on the different phase transitions: glass transition, cold crystallization, melt crystallization and melting processes. Presence of both additives moves down the temperature at which PLA phase transitions take place, while allowing the PLA crystallization from the melt at 10 °C/min in the composites. This tridimensional ordering is not noticeable in the pristine PLA matrix and, accordingly, PLA crystallization rate is considerably increased under dynamic conditions and also after isothermal crystallization from either the melt or the glassy state. An important synergistic effect of dual action of ATBC and MCM-41 has been, therefore, found.

6.
J Therm Anal Calorim ; 147(23): 13363-13374, 2022.
Article in English | MEDLINE | ID: mdl-35974745

ABSTRACT

Recycling of plastics is absolutely essential in a circular economy, especially in the case of commodity polymers from fossil resources, like isotactic polypropylene (iPP). Therefore, evaluation of the factors that are decisive for an optimum performance of the recycled based materials becomes mandatory for the obtainment of new products with optimal properties. One of the most important aspects is the protection of the plastics materials not only against the external degradation agents, but also from the radicals generated during their previous service life. Accordingly, several materials have been prepared by extrusion based on virgin iPP with different amounts of the same polypropylene severely degraded, which has been used as model component to be recycled. Previous to the extrusion, a mixture of antioxidants was added to all the samples, and special attention has been paid to consumption of those additives during the extrusion. The results show an increasing reduction of antioxidants with rising content of the degraded material. But, importantly, a rather analogous mechanical response has been found for all the recycled materials in relation to the virgin iPP, pointing out a satisfactory dilution effect of the existing degradation points within the virgin polymeric chains, and indicating the very relevant action of the antioxidants used.

7.
Polymers (Basel) ; 14(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35335567

ABSTRACT

Two L-rich polylactides (PLLA) with distinct contents in D isomer and their composites with an intermediate amount of mesoporous Santa Barbara Amorphous-15 (SBA-15) (about 9 wt.%) particles were attained by melt extrusion for the evaluation of the effect of content in D isomer and incorporation of mesoporous silica on the structural PLLA features and on their ultimate mechanical performance. For that, samples have been crystallized under dynamic and isothermal tests (from the melt and from the glassy states). The results from DSC and X-ray diffraction show obtainment of the pure α' and α modifications at different intervals of crystallization temperature depending on the D steroisomer amount of the PLLA used. Furthermore, several phase transitions are observed depending on the crystallinity reached and the polymorphs developed during the isothermal crystallization from the glass: an additional cold crystallization, the α'/α transformation and the subsequent melting process, appearing all of them at temperatures clearly dependent on the D content. Rigidity, measured through microhardness in amorphous samples, is also affected by the D isomer and the presence of SBA-15 particles. Reinforcement effect of mesoporous silica is relatively more important in the matrix with the highest D content.

8.
Nat Commun ; 12(1): 5937, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34642345

ABSTRACT

Development of sustainable processes for hydrocarbons synthesis is a fundamental challenge in chemistry since these are of unquestionable importance for the production of many essential synthetic chemicals, materials and carbon-based fuels. Current industrial processes rely on non-abundant metal catalysts, temperatures of hundreds of Celsius and pressures of tens of bars. We propose an alternative gas phase process under mild reaction conditions using only atomic carbon, molecular hydrogen and an inert carrier gas. We demonstrate that the presence of CH2 and H radicals leads to efficient C-C chain growth, producing micron-length fibres of unbranched alkanes with an average length distribution between C23-C33. Ab-initio calculations uncover a thermodynamically favourable methylene coupling process on the surface of carbonaceous nanoparticles, which is kinematically facilitated by a trap-and-release mechanism of the reactants and nanoparticles that is confirmed by a steady incompressible flow simulation. This work could lead to future alternative sustainable synthetic routes to critical alkane-based chemicals or fuels.

9.
Polymers (Basel) ; 13(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34503000

ABSTRACT

Several composites were prepared based on a polypropylene random copolymer (PPR) and different amounts of date stone flour (DSF). This cellulosic fiber was silanized beforehand in order to reduce its hydrophilicity and improve the interfacial adhesion with the polymer. Other composites were also obtained, including a sorbitol derivative as an effective nucleant. Films made from these composites were prepared using two different thermal treatments, involving slow crystallization and rapid cooling from the melt. Scanning electron microscopy was used to evaluate the morphological features and the DSF particle dispersion within the PPR matrix. X-ray diffraction experiments and differential scanning calorimetry tests were employed to assess the crystalline characteristics and for the phase transitions, paying especial attention to the effects of the DSF and nucleating agent on PPR crystallization. An important nucleation ability was found for DSF, and evidently for the sorbitol derivative. The peak crystallization temperature upon cooling was considerably increased by the incorporation of either the nucleant or DSF. Additionally, a much higher proportion of orthorhombic crystals developed in relation to the monoclinic ones. Moreover, the mechanical responses were estimated from the microhardness experiments and significant improvements were found with increasing DSF contents. All of these findings indicate that the use of silanized DSF is a fairly good approach for the preparation of polymeric eco-composites, taking advantage of the widespread availability of this lignocellulosic material, which is otherwise wasted.

10.
Polymers (Basel) ; 13(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34451363

ABSTRACT

Pipes of polypropylene random (PP-R) copolymers are the best choice for hot- and cold-water networks. Validation of a severe test, accomplishing the ISO 1167 standard, is mandatory to assess their service lifetime expectancy. This work evaluates the behavior shown by three commercial pipes, either the original ones (new pipes) or after being subjected to a hydrostatic pressure test at elevated temperature (aged pipes). Several features with relevance for the final performance have been examined: crystalline characteristics, phase transitions in crystalline regions, effect of high temperature and pressure on these transitions, and oxidation induction time. Moreover, the presence of inorganic fillers, and the content of different antioxidants together with their depletion, have also been analyzed. Films from the new pipes were also prepared for replication of the different environments in order to achieve a better and complete understanding of the phase transitions in the crystalline regions and of the consumption of antioxidants. Distinct environments surrounded the inner and outer parts of the pipes exposed to the failure aging test at 110 °C: hot water and warm dry air, respectively. These features play a key role in the loss of additives and in the subsequent initiation of degradation. Even if the crystalline characteristics are appropriate in the polymeric matrix, the success of a pipe lies in the homogeneous dispersion of components for avoiding damage at interfacial properties, and in a correct package of antioxidants used in its formulation.

11.
Polymers (Basel) ; 14(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35012150

ABSTRACT

A study of different nanocomposites based on poly(ε-caprolactone) (PCL) and mesoporous SBA-15 silica that were prepared by melt extrusion was carried out by analyzing the possible effect of this filler on the crystalline details of PCL, on its mechanical behavior, and on the eventual observation of the confinement of the polymeric chains within the hollow nanometric silica channels. Thus, simultaneous Small-Angle and Wide-Angle X-ray Scattering (SAXS/WAXS) synchrotron experiments at variable temperature were performed on these PCL nanocomposites with different mesoporous silica contents. The importance of the morphological and structural features was assessed by the changes that were observed during the mechanical response of the final materials, which determined that the presence of mesoporous particles leads to a noticeable reinforcing effect.

12.
Polymers (Basel) ; 12(11)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33227923

ABSTRACT

Several composites based on an L-rich poly(lactic acid) (PLA) with different contents of mesoporous Santa Barbara Amorphous (SBA-15) silica were prepared in order to evaluate the effect of the mesoporous silica on the resultant PLA materials by examining morphological aspects, changes in PLA phases and their transitions, and, primarily, the influence on some final properties. Melt extrusion was chosen for the obtainment of the composites, followed by quenching from the melt to prepare films. Completely amorphous samples were then attained, as deduced from X-ray diffraction and differential scanning calorimetry (DSC) analyses. Thermogravimetric analysis (TGA) results demonstrated that the presence of SBA-15 particles in the PLA matrix did not exert any significant influence on the thermal decomposition of these composites. An important nucleation effect of the silica was found in PLA, especially under isothermal crystallization either from the melt or from its glassy state. As expected, isothermal crystallization from the glass was considerably faster than from the molten state, and these high differences were also responsible for a more considerable nucleating role of SBA-15 when crystallizing from the melt. It is remarkable that the PLA under analysis showed very close temperatures for cold crystallization and its subsequent melting. Moreover, the type of developed polymorphs did not accomplish the common rules previously described in the literature. Thus, all the isothermal experiments led to exclusive formation of the α modification, and the observation of the α' crystals required the annealing for long times at temperatures below 80 °C, as ascertained by both DSC and X-ray diffraction experiments. Finally, microhardness (MH) measurements indicated a competition between the PLA physical aging and the silica reinforcement effect in the as-processed amorphous films. Physical aging in the neat PLA was much more important than in the PLA matrix that constituted the composites. Accordingly, the MH trend with SBA-15 content was strongly dependent on aging times.

13.
Polymers (Basel) ; 12(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207757

ABSTRACT

Structuring at very high rates has become one of the current and important topics of interest in polymer science, because this is a common protocol in the processing of films or fibers with industrial applicability. This work presents the study by fast scanning calorimetry, FSC, of poly(vinylidene fluoride), paying special attention to the conditions for obtaining the ß phase of this polymer, because it is the one technologically more interesting. The results indicate that this ß phase of poly(vinylidene fluoride) is obtained when the sample is isothermally crystallized at temperatures below 60 °C. Under non-isothermal conditions, the ß polymorph begins to be observed at rates above 400 °C/s, although a coexistence with the α modification is observed, so that exclusively the ß phase is obtained only at rates higher than 3000 °C/s.

14.
Polymers (Basel) ; 12(6)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545732

ABSTRACT

A detailed study of the phase behavior of n-paraffin C23H48 has been performed by means of real-time variable-temperature experiments with synchrotron radiation. Two detectors were employed for simultaneous analysis of the small-angle (SAXS) and wide-angle X-ray-scattering (WAXS) regions. This paraffin presents a very interesting phase behavior, involving two crystal polymorphs, three rotator phases and the liquid state. The Ostwald rule of stages is invoked to find similarities of the rotator phases with the eventual transient mesomorphic structure in the multistage model of polymer crystallization. That study is complemented by variable-temperature Raman experiments covering frequencies down to 150 cm-1. It was found that the low-frequency region is the most informative regarding the phase transitions, and specifically the intensity of the first overtone. From these analyses, several parameters are evaluated as function of temperature.

15.
ACS Omega ; 5(16): 9055-9063, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32363257

ABSTRACT

Additives are absolutely essential in the development of commercial polymeric materials. Accordingly, an exhaustive control of composition and evolution in these additives over time is necessary to validate their performance and safety during their shelf life and, consequently, their ultimate applications. Gas chromatography coupled with mass spectrometry, GC-MS, is described in the present work to identify and analyze the content of a wide variety of additives, commonly used in industrial polymeric materials. First, the identification under the present experimental protocol of additives with a relatively high molecular weight (Irganox 1330 and Irganox 1010) has been successfully attained. Second, the evolution under solar exposure over time has been analyzed by GC-MS for 11 additives and derived substances, which have been identified in a commercial polypropylene sample, estimating the corresponding depletion times. In addition, the resultant increase of carbonyl groups in the polymeric macrochains along the photo-oxidation has been also determined by infrared spectroscopy. Therefore, GC-MS is found to be a reliable tool for the analysis of the evolution of commonly used polymer additives under specific degradation conditions, which can be very useful in the formulation of improved future additivations.

16.
Polymers (Basel) ; 11(11)2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31766237

ABSTRACT

Blends of poly(ε-caprolactone) (PCL) and high-density polyethylene (HDPE) have been prepared at different compositions in order to assess the effect of HDPE on gas transport and mechanical behaviors of PCL. Previous to this evaluation, a complete morphological, structural, and thermal characterization were performed using techniques, including SEM, contact angle, FTIR, differential scanning calorimetry, and X-ray diffraction with synchrotron radiation at small and wide angles. Low HDPE incorporations allow interactions to be established at interfaces in the amorphous regions and the enhancement of the mechanical performance. Consequently, the addition of a small amount of HDPE (ranging from 5 to 10 wt%) appears to be appropriate in certain bio-applications where a higher mechanical behavior is required.

SELECTION OF CITATIONS
SEARCH DETAIL
...