Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(3): 1649-1659, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36622362

ABSTRACT

The synthesis of homogeneous covalent organic framework (COF) thin films on a desired substrate with decent crystallinity, porosity, and uniform thickness has great potential for optoelectronic applications. We have used a solution-processable sphere transmutation process to synthesize 300 ± 20 nm uniform COF thin films on a 2 × 2 cm2 TiO2-coated fluorine-doped tin oxide (FTO) surface. This process controls the nucleation of COF crystallites and molecular morphology that helps the nanospheres to arrange periodically to form homogeneous COF thin films. We have synthesized four COF thin films (TpDPP, TpEtBt, TpTab, and TpTta) with different functional backbones. In a close agreement between the experiment and density functional theory, the TpEtBr COF film showed the lowest optical band gap (2.26 eV) and highest excited-state lifetime (8.52 ns) among all four COF films. Hence, the TpEtBr COF film can participate in efficient charge generation and separation. We constructed optoelectronic devices having a glass/FTO/TiO2/COF-film/Au architecture, which serves as a model system to study the optoelectronic charge transport properties of COF thin films under dark and illuminated conditions. Visible light with a calibrated intensity of 100 mW cm-2 was used for the excitation of COF thin films. All of the COF thin films exhibit significant photocurrent after illumination with visible light in comparison to the dark. Hence, all of the COF films behave as good photoactive substrates with minimal pinhole defects. The fabricated out-of-plane photodetector device based on the TpEtBr COF thin film exhibits high photocurrent density (2.65 ± 0.24 mA cm-2 at 0.5 V) and hole mobility (8.15 ± 0.64 ×10-3 cm2 V-1 S-1) compared to other as-synthesized films, indicating the best photoactive characteristics.

2.
ACS Appl Mater Interfaces ; 13(28): 32894-32905, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34240843

ABSTRACT

Passivation is one of the most promising concepts to heal defects created at the surface and grain boundaries of polycrystalline perovskite thin films, which significantly deteriorate the photovoltaic performance and stability of corresponding devices. Here, 1,10-phenanthroline, known as a bidentate chelating ligand, is implemented between the methylammonium lead iodide (MAPbI3) film and the hole-transport layer for both passivating the lead-based surface defects (undercoordinated lead ions) and converting the excess/unreacted lead iodide (PbI2) buried at interfaces, which is problematic for the long-term stability, into "neutralized" and beneficial species (PbI2(1,10-phen)x, x = 1, 2) for efficient hole transfer at the modified interface. The defect healing ability of 1,10-phenanthroline is verified with a set of complementary techniques including photoluminescence (steady-state and time-resolved), space-charge-limited current (SCLC) measurements, light intensity dependent JV measurements, and Fourier-transform photocurrent spectroscopy (FTPS). In addition to these analytical methods, we employ advanced X-ray scattering techniques, nano-Fourier transform infrared (nano-FTIR) spectroscopy, and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) to further analyze the structure and chemical composition at the perovskite surface after treatment at nanoscale spatial resolution. On the basis of our experimental results, we conclude that 1,10-phenanthroline treatment induces the formation of different morphologies with distinct chemical compositions on the surface of the perovskite film such that surface defects are effectively passivated, and excess/unreacted PbI2 is converted into beneficial complex species at the modified interface. As a result, an improved power conversion efficiency (20.16%) and significantly more stable unencapsulated perovskite solar cells are obtained with the 1,10-phenanthroline treatment compared to the MAPbI3 reference device (18.03%).

3.
ACS Appl Mater Interfaces ; 13(16): 19072-19084, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33861568

ABSTRACT

Organic solar cells (OSCs) recently achieved efficiencies of over 18% and are well on their way to practical applications, but still considerable stability issues need to be overcome. One major problem emerges from the electron transport material zinc oxide (ZnO), which is mainly used in the inverted device architecture and decomposes many high-performance nonfullerene acceptors due to its photocatalytic activity. In this work, we add three different fullerene derivatives-PC71BM, ICMA, and BisPCBM-to an inverted binary PBDB-TF:IT-4F system in order to suppress the photocatalytic degradation of IT-4F on ZnO via the radical scavenging abilities of the fullerenes. We demonstrate that the addition of 5% fullerene not only increases the performance of the binary PBDB-TF:IT-4F system but also significantly improves the device lifetime under UV illumination in an inert atmosphere. While the binary devices lose 20% of their initial efficiency after only 3 h, this time is increased fivefold for the most promising ternary devices with ICMA. We attribute this improvement to a reduced photocatalytic decomposition of IT-4F in the ternary system, which results in a decreased recombination. We propose that the added fullerenes protect the IT-4F by acting as a sacrificial reagent, thereby suppressing the trap state formation. Furthermore, we show that the protective effect of the most promising fullerene ICMA is transferable to two other binary systems PBDB-TF:BTP-4F and PTB7-Th:IT-4F. Importantly, this effect can also increase the air stability of PBDB-TF:IT-4F. This work demonstrates that the addition of fullerene derivatives is a transferable and straightforward strategy to improve the stability of OSCs.

4.
ACS Omega ; 5(1): 386-393, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31956786

ABSTRACT

Silver nanoparticles (AgNPs) have a large number of applications in technology and physical and biological sciences. These nanomaterials can be synthesized by chemical and biological methods. The biological synthesis using fungi represents a green approach for nanomaterial production that has the advantage of biocompatibility. This work studies silver nanoparticles (AgNPs) produced by fungi Rhodotorula glutinis and Rhodotorula mucilaginosa found in ordinary soil of the Universidade Federal do Ceará campus (Brazil). The biosynthesized AgNPs have a protein-capping layer involving a metallic Ag core. The focus of this paper is to investigate the size and structure of the capping layer, how it interacts with the Ag core, and how sensitive the system (core + protein) is to visible light illumination. For this, we employed SEM, AFM, photoluminescence spectroscopy, SERS, and dark-field spectroscopy. The AgNPs were isolated, and SEM measurements showed the average size diameter between 58 nm for R. glutinis and 30 nm for R. mucilaginosa. These values are in agreement with the AFM measurements, which also provided the average size diameter of 85 nm for R. glutinis and 56 nm for R. mucilaginosa as well as additional information about the average size of the protein-capping layers, whose found values were 24 and 21 nm for R. mucilaginosa and R. glutinis nanoparticles, respectively. The protein-capping layer structure seemed to be easily disturbed, and the SERS spectra were unstable. It was possible to identify Raman peaks that might be related to α-helix, ß-sheet, and protein mixed structures. Finally, dark-field microscopy showed that the silver cores are very stable, but some are affected by the laser energy due to heating or melting.

SELECTION OF CITATIONS
SEARCH DETAIL
...