Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37896107

ABSTRACT

This paper presents the first continuous (gap-free) Late Glacial-Early Holocene (LGEH) pollen record for the Iberian Pyrenees resolved at centennial resolution. The main aims are (i) to provide a standard chronostratigraphic correlation framework, (ii) to unravel the relationships between vegetation shifts, climatic changes and fire, and (iii) to obtain a regional picture of LGEH vegetation for the Pyrenees and the surrounding lowlands. Seven pollen assemblage zones were obtained and correlated with the stadial/interstadial phases of the Greenland ice cores that serve as a global reference. Several well-dated datums were also derived for keystone individual taxa that are useful for correlation purposes. Four vegetation types were identified, two of them corresponding to conifer and deciduous forests (Cf, Df) and two representing open vegetation types (O1, O2) with no modern analogs, dominated by Artemisia-Poaceae and Saxifraga-Cichorioideae, respectively. Forests dominated during interstadial phases (Bølling/Allerød and Early Holocene), whereas O1 dominated during stadials (Oldest Dryas and Younger Dryas), with O2 being important only in the first half of the Younger Dryas. The use of pollen-independent proxies for temperature and moisture allowed the reconstruction of paleoclimatic trends and the responses of the four vegetation types defined. The most relevant observation in this sense was the finding of wet climates during the Younger Dryas, which challenges the traditional view of arid conditions for this phase on the basis of former pollen records. Fire incidence was low until the Early Holocene, when regional fires were exacerbated, probably due to the combination of higher temperatures and forest biomass accumulation. These results are compared with the pollen records available for the whole Pyrenean range and the surrounding lowlands within the framework of elevational, climatic and biogeographical gradients. Some potential future developments are suggested on the basis of the obtained results, with an emphasis on the reconsideration of the LGEH spatiotemporal moisture patterns and the comparison of the Pyrenees with other European ranges from different climatic and biogeographical regions.

2.
Sci Rep ; 7(1): 1196, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28446780

ABSTRACT

Among abundant reconstructions of Holocene climate in Europe, only a handful has addressed winter conditions, and most of these are restricted in length and/or resolution. Here we present a record of late autumn through early winter air temperature and moisture source changes in East-Central Europe for the Holocene, based on stable isotopic analysis of an ice core recovered from a cave in the Romanian Carpathian Mountains. During the past 10,000 years, reconstructed temperature changes followed insolation, with a minimum in the early Holocene, followed by gradual and continuous increase towards the mid-to-late-Holocene peak (between 4-2 kcal BP), and finally by a decrease after 0.8 kcal BP towards a minimum during the Little Ice Age (AD 1300-1850). Reconstructed early Holocene atmospheric circulation patterns were similar to those characteristics of the negative phase of the North Atlantic Oscillation (NAO), while in the late Holocene they resembled those prevailing in the positive NAO phase. The transition between the two regimes occurred abruptly at around 4.7 kcal BP. Remarkably, the widespread cooling at 8.2 kcal BP is not seen very well as a temperature change, but as a shift in moisture source, suggesting weaker westerlies and increased Mediterranean cyclones penetrating northward at this time.

3.
Proc Natl Acad Sci U S A ; 111(48): 17045-9, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25404290

ABSTRACT

The impact of rapid climate change on contemporary human populations is of global concern. To contextualize our understanding of human responses to rapid climate change it is necessary to examine the archeological record during past climate transitions. One episode of abrupt climate change has been correlated with societal collapse at the end of the northwestern European Bronze Age. We apply new methods to interrogate archeological and paleoclimate data for this transition in Ireland at a higher level of precision than has previously been possible. We analyze archeological (14)C dates to demonstrate dramatic population collapse and present high-precision proxy climate data, analyzed through Bayesian methods, to provide evidence for a rapid climatic transition at ca. 750 calibrated years B.C. Our results demonstrate that this climatic downturn did not initiate population collapse and highlight the nondeterministic nature of human responses to past climate change.


Subject(s)
Archaeology/methods , Climate Change , Population Dynamics , Radiometric Dating/methods , Bayes Theorem , Carbon Radioisotopes , Climate , Ecosystem , Geography , Humans , Ireland
4.
Environ Pollut ; 178: 381-94, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23619507

ABSTRACT

The objective of our study was to determine the trace metal accumulation rates in the Misten bog, Hautes-Fagnes, Belgium, and assess these in relation to established histories of atmospheric emissions from anthropogenic sources. To address these aims we analyzed trace metals and metalloids (Pb, Cu, Ni, As, Sb, Cr, Co, V, Cd and Zn), as well as Pb isotopes, using XRF, Q-ICP-MS and MC-ICP-MS, respectively in two 40-cm peat sections, spanning the last 600 yr. The temporal increase of metal fluxes from the inception of the Industrial Revolution to the present varies by a factor of 5-50, with peak values found between AD 1930 and 1990. A cluster analysis combined with Pb isotopic composition allows the identification of the main sources of Pb and by inference of the other metals, which indicates that coal consumption and metallurgical activities were the predominant sources of pollution during the last 600 years.


Subject(s)
Atmosphere/chemistry , Environmental Pollution/statistics & numerical data , Metalloids/analysis , Metals/analysis , Soil Pollutants/analysis , Soil/chemistry , Belgium , Environmental Monitoring , Environmental Pollution/history , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century
5.
Ecology ; 93(8): 1841-52, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22928413

ABSTRACT

The mid-Holocene decline of Tsuga canadensis (hereafter Tsuga) populations across eastern North America is widely perceived as a synchronous event, driven by pests/pathogens, rapid climate change, or both. Pattern identification and causal attribution are hampered by low stratigraphic density of pollen-sampling and radiometric dates at most sites, and by absence of highly resolved, paired pollen and paleoclimate records from single sediment cores, where chronological order of climatic and vegetational changes can be assessed. We present an intensely sampled (contiguous 1-cm intervals) record of pollen and water table depth (inferred from testate amoebae) from a single core spanning the Tsuga decline at Irwin Smith Bog in Lower Michigan, with high-precision chronology. We also present an intensively sampled pollen record from Tower Lake in Upper Michigan. Both sites show high-magnitude fluctuations in Tsuga pollen percentages during the pre-decline maximum. The terminal decline is dated at both sites ca. 5000 cal yr BP, some 400 years later than estimates from other sites and data compilations. The terminal Tsuga decline was evidently heterochronous across its range. A transient decline ca. 5350 cal yr BP at both sites may correspond to the terminal decline at other sites in eastern North America. At Irwin Smith Bog, the terminal Tsuga decline preceded an abrupt and persistent decline in water table depths by approximately 200 years, suggesting the decline was not directly driven by abrupt climate change. The Tsuga decline may best be viewed as comprising at least three phases: a long-duration pre-decline maximum with high-magnitude and high-frequency fluctuations, followed by a terminal decline at individual sites, followed in turn by two millennia of persistently low Tsuga populations. These phases may not be causally linked, and may represent dynamics taking place at multiple temporal and spatial scales. Further progress toward understanding the phenomenon requires an expanded network of high-resolution pollen and paleoclimate chronologies.


Subject(s)
Ecosystem , Tsuga/physiology , Climate Change , North America , Pollen , Population Dynamics , Time Factors
7.
Nature ; 462(7273): 637-41, 2009 Dec 03.
Article in English | MEDLINE | ID: mdl-19956257

ABSTRACT

External climate forcings-such as long-term changes in solar insolation-generate different climate responses in tropical and high latitude regions. Documenting the spatial and temporal variability of past climates is therefore critical for understanding how such forcings are translated into regional climate variability. In contrast to the data-rich middle and high latitudes, high-quality climate-proxy records from equatorial regions are relatively few, especially from regions experiencing the bimodal seasonal rainfall distribution associated with twice-annual passage of the Intertropical Convergence Zone. Here we present a continuous and well-resolved climate-proxy record of hydrological variability during the past 25,000 years from equatorial East Africa. Our results, based on complementary evidence from seismic-reflection stratigraphy and organic biomarker molecules in the sediment record of Lake Challa near Mount Kilimanjaro, reveal that monsoon rainfall in this region varied at half-precessional ( approximately 11,500-year) intervals in phase with orbitally controlled insolation forcing. The southeasterly and northeasterly monsoons that advect moisture from the western Indian Ocean were strengthened in alternation when the inter-hemispheric insolation gradient was at a maximum; dry conditions prevailed when neither monsoon was intensified and modest local March or September insolation weakened the rain season that followed. On sub-millennial timescales, the temporal pattern of hydrological change on the East African Equator bears clear high-northern-latitude signatures, but on the orbital timescale it mainly responded to low-latitude insolation forcing. Predominance of low-latitude climate processes in this monsoon region can be attributed to the low-latitude position of its continental regions of surface air flow convergence, and its relative isolation from the Atlantic Ocean, where prominent meridional overturning circulation more tightly couples low-latitude climate regimes to high-latitude boundary conditions.


Subject(s)
Geologic Sediments/chemistry , Rain , Seasons , Tropical Climate , Africa, Eastern , Climate Change , Time Factors
8.
Science ; 308(5728): 1551-3; author reply 1551-3, 2005 Jun 10.
Article in English | MEDLINE | ID: mdl-15947156
SELECTION OF CITATIONS
SEARCH DETAIL
...