Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17258, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828024

ABSTRACT

X-ray spectroscopy is a demanded tool across multiple user communities. Here we report on a new station for X-ray emission spectroscopy at the Extreme Light Infrastructure Beamlines Facility. The instrument utilizes the von Hamos geometry and works with a number of different sample types, notably including liquid systems. We demonstrate a simple and reliable method for source position control using two cameras. This approach addresses energy calibration dependence on sample position, which is a characteristic source of measurement uncertainty for wavelength dispersive spectrometers in XES arrangement. We also present a straightforward procedure for energy calibration of liquid and powder samples to a thin film reference. The developed instrumentation enabled us to perform the first experimental determination of the Kα lines of liquidized K3Fe(CN)6 as well as powdered and liquidized FeNH4(SO4)2. Finally, we report on proof-of-principle use of a colliding jet liquid sample delivery system in an XES experiment.

2.
Struct Dyn ; 6(2): 024901, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31041363

ABSTRACT

"Probe-before-destroy" methodology permitted diffraction and imaging measurements of intact specimens using ultrabright but highly destructive X-ray free-electron laser (XFEL) pulses. The methodology takes advantage of XFEL pulses ultrashort duration to outrun the destructive nature of the X-rays. Atomic movement, generally on the order of >50 fs, regulates the maximum pulse duration for intact specimen measurements. In this contribution, we report the electronic structure damage of a molecule with ultrashort X-ray pulses under preservation of the atoms' positions. A detailed investigation of the X-ray induced processes revealed that X-ray absorption events in the solvent produce a significant number of solvated electrons within attosecond and femtosecond timescales that are capable of coulombic interactions with the probed molecules. The presented findings show a strong influence on the experimental spectra coming from ionization of the probed atoms' surroundings leading to electronic structure modification much faster than direct absorption of photons. This work calls for consideration of this phenomenon in cases focused on samples embedded in, e.g., solutions or in matrices, which in fact concerns most of the experimental studies.

3.
Phys Chem Chem Phys ; 19(43): 29271-29277, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29067360

ABSTRACT

The potential of valence to core Al X-ray emission spectroscopy to determine aluminum distribution in ferrierite zeolites was investigated. The recorded emission spectra of four samples prepared with different structure directing agents exhibit slight variations in the position of the main emission peak and the intensity of its low energy shoulder. Theoretical calculations indicate that an increased intensity of the Kßx shoulder in the Al emission spectra can be linked to a predominant occupation of the T3 site by a single aluminum atom. This study thus suggests that valence to core X-ray emission spectroscopy can be applied to help determine the occupation of aluminum at crystallographic T-sites in zeolites.

4.
Phys Rev Lett ; 112(17): 173003, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24836243

ABSTRACT

X-ray emission spectra recorded in the off-resonant regime carry information on the density of unoccupied states. It is known that by employing the Kramers-Heisenberg formalism, the high energy resolution off-resonant spectroscopy (HEROS) is equivalent to the x-ray absorption spectroscopy (XAS) technique and provides the same electronic state information. Moreover, in the present Letter we demonstrate that the shape of HEROS spectra is not modified by self-absorption effects. Therefore, in contrast to the fluorescence-based XAS techniques, the recorded shape of the spectra is independent of the sample concentration or thickness. The HEROS may thus be used as an experimental technique when precise information about specific absorption features and their strengths is crucial for chemical speciation or theoretical evaluation.

5.
Rev Sci Instrum ; 85(4): 043101, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24784587

ABSTRACT

The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-ray tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO2 optical fibers.


Subject(s)
Spectrometry, X-Ray Emission/instrumentation , Spectrometry, X-Ray Emission/methods , X-Rays
6.
Struct Dyn ; 1(2): 021101, 2014 Mar.
Article in English | MEDLINE | ID: mdl-26798772

ABSTRACT

Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10(-18) s) to femtoseconds (10(-15) s) and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS), we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...