Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35419565

ABSTRACT

Impaired use of the hand in functional tasks remains difficult to overcome in many individuals after a stroke. This often leads to compensation strategies using the less-affected limb, which allows for independence in some aspects of daily activities. However, recovery of hand function remains an important therapeutic goal of many individuals, and is often resistant to conventional therapies. In prior work, we developed HEXORR I, a robotic device that allows practice of finger and thumb movements with robotic assistance. In this study, we describe modifications to the device, now called HEXORR II, and a clinical trial in individuals with chronic stroke. Fifteen individuals with a diagnosis of chronic stroke were randomized to 12 or 24 sessions of robotic therapy. The sessions involved playing several video games using thumb and finger movement. The robot applied assistance to extension movement that was adapted based on task performance. Clinical and motion capture evaluations were performed before and after training and again at a 6-month followup. Fourteen individuals completed the protocol. Fugl-Meyer scores improved significantly at the 6 month time point compared to baseline, indicating reductions in upper extremity impairment. Flexor hypertonia (Modified Ashworth Scale) also decreased significantly due to the intervention. Motion capture found increased finger range of motion and extension ability after the intervention that continued to improve during the followup period. However, there was no change in a functional measure (Action Research Arm Test). At the followup, the high dose group had significant gains in hand displacement during a forward reach task. There were no other significant differences between groups. Future work with HEXORR II should focus on integrating it with functional task practice and incorporating grip and squeezing tasks.

2.
Exp Brain Res ; 232(12): 3785-95, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25142151

ABSTRACT

Internal models allow unimpaired individuals to appropriately scale grip force when grasping and lifting familiar objects. In prosthesis users, the internal model must adapt to the characteristics of the prosthetic devices and reduced sensory feedback. We studied the internal models of 11 amputees and eight unimpaired controls when grasping and lifting a fragile object. When the object was modified from a rigid to fragile state, both subject groups adapted appropriately by significantly reducing grasp force on the first trial with the fragile object compared to the rigid object (p < 0.020). There was a wide range of performance skill illustrated by amputee subjects when lifting the fragile object in 10 repeated trials. One subject, using a voluntary close device, never broke the object, four subjects broke the fragile device on every attempt and seven others failed on their initial attempts, but improved over the repeated trials. Amputees decreased their grip forces 51 ± 7 % from the first to the last trial (p < 0.001), indicating a practice effect. However, amputees used much higher levels of force than controls throughout the testing (p < 0.015). Amputees with better performance on the Box and Blocks test used lower grip force levels (p = 0.006) and had more successful lifts of the fragile object (p = 0.002). In summary, amputees do employ internal models when picking up objects; however, the accuracy of these models is poor and grip force modulation is significantly impaired. Further studies could examine the alternative sensory modalities and training parameters that best promote internal model formation.


Subject(s)
Arm/physiology , Artificial Limbs , Hand Strength/physiology , Lifting , Psychomotor Performance/physiology , Adult , Aged , Humans , Middle Aged , Young Adult
3.
J Rehabil Res Dev ; 48(4): 287-98, 2011.
Article in English | MEDLINE | ID: mdl-21674384

ABSTRACT

A new overground body-weight support system called ZeroG has been developed that allows patients with severe gait impairments to practice gait and balance activities in a safe, controlled manner. The unloading system is capable of providing up to 300 lb of static support and 150 lb of dynamic (or constant force) support using a custom-series elastic actuator. The unloading system is mounted to a driven trolley, which rides along an overhead rail. We evaluated the performance of ZeroG's unloading system, as well as the trolley tracking system, using benchtop and human-subject testing. Average root-mean-square and peak errors in unloading were 2.2 and 7.2 percent, respectively, over the range of forces tested while trolley tracking errors were less than 3 degrees, indicating the system was able to maintain its position above the subject. We believe training with ZeroG will allow patients to practice activities that are critical to achieving functional independence at home and in the community.


Subject(s)
Gait , Physical Therapy Modalities/instrumentation , Postural Balance , Equipment Design , Humans , Mobility Limitation , Walking
4.
IEEE Trans Neural Syst Rehabil Eng ; 19(4): 391-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21622079

ABSTRACT

Stroke patients often have flexor hypertonia and finger extensor weakness, which makes it difficult to open their affected hand for functional grasp. Because of this impairment, hand rehabilitation after stroke is essential for restoring functional independent lifestyles. The goal of this study is to develop a passive, lightweight, wearable device to assist with hand function during performance of activities of daily living. The device, Hand Spring Operated Movement Enhancer (HandSOME), assists with opening the patient's hand using a series of elastic cords that apply extension torques to the finger joints and compensates for the flexor hypertonia. Device design and calibration are described as well as functional and usability testing with stroke subjects with a wide range of hand impairments. In initial testing with eight stroke subjects with finger flexor hypertonia, use of the HandSOME significantly increased range of motion and functional ability (p=0.002) . There was some decrease in grip strength with the HandSOME device at the subject's ideal setting, however this was not statistically significant (p=0.167) and did not seem to have a significant effect on function. Overall HandSOME shows promise as a training tool to facilitate repetitive task practice for improving hand function in stroke patients. HandSOME can be used as part of a home-based therapy program, or as an orthotic for replacing lost function.


Subject(s)
Hand/physiology , Movement/physiology , Prostheses and Implants , Stroke Rehabilitation , Activities of Daily Living , Biomechanical Phenomena , Elasticity , Female , Fingers/physiology , Hand Strength/physiology , Humans , Male , Mechanical Phenomena , Middle Aged , Muscle, Skeletal/physiology , Orthotic Devices , Prosthesis Design , Range of Motion, Articular
5.
Exp Brain Res ; 183(2): 271-81, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17643236

ABSTRACT

The goal of this study was to compare short- and long-latency reflex responses in eight major lower-extremity muscle groups following an imposed multi-joint leg movement between a group of 14 chronic (>1 year) stroke survivors and 10 healthy age-matched controls, and to investigate the influence of joint velocities and muscle excitation levels on these reflex responses in each respective group. Subjects were seated with their foot anchored to a sliding footplate that could extend their leg. Prior to the leg being moved, subjects were instructed to pre-activate hip and knee flexors and extensors. Feedback of joint torque was used to help subjects activate muscles over a range of excitation levels. Following pre-activation, the subject's leg was passively extended so the knee or hip joint rotated at one of three different speeds (30, 60, and 120 degrees /s). In general, it was found that the magnitude of stroke survivors' reflex response was greater compared to controls' in certain biarticular muscles, notably the gastrocnemius and medial hamstring, and the uniarticular adductor longus, and that the long-latency reflex component (between 40 and 150 ms post-movement) accounted for most of the observed differences. Furthermore, while reflex response amplitudes increased in both groups with increasing movement speed, the rate of increase was significantly larger in stroke subjects than in controls. Clinically, these findings may help explain why stroke survivors walk slowly since it is under these conditions that reflex responses better emulate those of their able-bodied counterparts.


Subject(s)
Joints/innervation , Lower Extremity/innervation , Movement/physiology , Psychomotor Performance/physiology , Reflex/physiology , Stroke/physiopathology , Aged , Analysis of Variance , Electromyography , Female , Humans , Male , Middle Aged , Muscle Strength Dynamometer , Muscle, Skeletal/innervation , Muscle, Skeletal/physiopathology , Reaction Time/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...