Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Discov Today ; 25(8): 1293-1297, 2020 08.
Article in English | MEDLINE | ID: mdl-32445668

ABSTRACT

The major therapeutic modality for type 1 diabetes mellitus (T1DM) remains sustaining euglycemia by exogenous administration of insulin. Based on a new understanding of bone marrow structural and functional dynamics, a conditioning-free bone marrow transplantation (BMT), with reduced adverse effects, opens the possibility for evaluating ß cell regeneration and restoration of euglycemia by induction of allogeneic chimerism in patients T1DM, as shown in a mouse model. With this therapeutic modality, donor bone marrow (BM) selection based on T1DM-predisposing and preventive phenotypes will improve treatment outcomes by limiting the risk of exacerbating the autoimmune processes in the BM recipient.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/therapy , Insulin-Secreting Cells/transplantation , Animals , Chimerism , Genetic Profile , Genotype , Humans
2.
Biophys J ; 111(4): 722-731, 2016 Aug 23.
Article in English | MEDLINE | ID: mdl-27558716

ABSTRACT

Resistance to Inhibitors of Cholinesterase A (Ric-8A) is a 60-kDa cytosolic protein that has chaperone and guanine nucleotide exchange (GEF) activity toward heterotrimeric G protein α subunits of the i, q, and 12/13 classes, catalyzing the release of GDP from Gα and subsequent binding of GTP. In the absence of GTP or GTP analogs, and subsequent to GDP release, Gα forms a stable nucleotide-free complex with Ric-8A. In this study, time-resolved fluorescence anisotropy measurements were employed to detect local motions of Gαi1 labeled at selected sites with Alexa 488 (C5) fluorescent dye (Ax) in the GDP, GTPγS (collectively, GXP), and Ric-8A-bound states. Sites selected for Alexa 488 (C5) derivatization were in the α-helical domain (residue 106), the α-helical domain-Ras-like domain hinge (residue 63), Switch I (residue 180), Switch II (residue 209), Switch III (residue 238), the α4 helix (residue 305), and at the junction between the purine-binding subsite in the ß6-α5 loop and the C-terminal α helix (residue 330). In the GXP-bound states, the Alexa fluorophore reports local motions with correlation times ranging from 1.0 to 1.8 ns. The dynamics at Ax180 is slower in Gαi1•GDP than in Gαi1•GTPγS. The reverse is true at Ax209. The order parameters, S(2), for Alexa probes at switch residues are high (0.78-0.88) in Gαi1•GDP and lower (0.67-0.75) in Gαi1•GTPγS, although in crystal structures, switch segments are more ordered in the latter. Local motions at Ax63, Ax180, Ax209, and Ax330 are all markedly slower (2.3-2.8 ns) in Gαi1:Ric-8A than in Gαi1•GXP, and only modest (± 0.1) differences in S(2) are observed at most sites in Gαi1:Ric-8A relative to Gαi1•GXP. The slow dynamics suggests long-range correlated transitions within an ensemble of states and, particularly in the hinge and switch segments that make direct contact with Ric-8A. Induction of Gαi1 structural heterogeneity by Ric-8A provides a mechanism for nucleotide release.


Subject(s)
GTP-Binding Protein alpha Subunits/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Nuclear Proteins/metabolism , Nucleotides/metabolism , Animals , GTP-Binding Protein alpha Subunits/chemistry , Guanine Nucleotide Exchange Factors/chemistry , Kinetics , Models, Molecular , Nuclear Proteins/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Structure, Tertiary , Rats
3.
J Phys Chem A ; 118(25): 4548-53, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24894066

ABSTRACT

Laboratory measurements of the rate coefficient for quenching of O3(ν2) by ground-state atomic oxygen, kO(ν2), at room temperature are presented. kO(ν2) is currently not well known and is necessary for appropriate nonlocal thermodynamic equilibrium modeling of the upper mesosphere and lower thermosphere. In this work, a 266 nm laser pulse photolyzes a small amount of O3 in a slow-flowing gas mixture of O3, Xe, and Ar. This process simultaneously produces atomic oxygen and increases the temperature of the gas mixture slightly, thereby increasing the population in the O3(ν2) state. Transient diode laser absorption spectroscopy is used to monitor the populations of the O3(ν2) and ground vibrational states as the system re-equilibrates. Relaxation rates are measured over a range of quencher concentrations to extract the rate coefficient of interest. The value of kO(ν2) was determined to be (2.2 ± 0.5) × 10(-12) cm(3) s(-1).

4.
Chem Mater ; 23(9): 2407-2418, 2011 May 10.
Article in English | MEDLINE | ID: mdl-23139440

ABSTRACT

We have developed a versatile, one-step melt synthesis of water-soluble, highly emissive silicon nanoparticles using bi-functional, low-melting solids (such as glutaric acid) as reaction media. Characterization through transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy shows that the one-step melt synthesis produces nanoscale Si cores surrounded by a silicon oxide shell. Analysis of the nanoparticle surface using FT-IR, zeta potential, and gel electrophoresis indicates that the bi-functional ligand used in the one-step synthesis is grafted onto the nanoparticle, which allows for tuning of the particle surface charge, solubility, and functionality. Photoluminescence spectra of the as-prepared glutaric acid-synthesized silicon nanoparticles show an intense blue-green emission with a short (ns) lifetime suitable for biological imaging. These nanoparticles are found to be stable in biological media and have been used to examine cellular uptake and distribution in live N2a cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...