Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863246

ABSTRACT

The shortage of decades-long continuous measurements of ecosystem processes limits our understanding of how changing climate impacts forest ecosystems. We used continuous eddy-covariance and hydrometeorological data over 2002-2022 from a young Douglas-fir stand on Vancouver Island, Canada to assess the long-term trend and interannual variability in evapotranspiration (ET) and transpiration (T). Collectively, annual T displayed a decreasing trend over the 21 years with a rate of 1% yr-1, which is attributed to the stomatal downregulation induced by rising atmospheric CO2 concentration. Similarly, annual ET also showed a decreasing trend since evaporation stayed relatively constant. Variability in detrended annual ET was mostly controlled by the average soil water storage during the growing season (May-October). Though the duration and intensity of the drought did not increase, the drought-induced decreases in T and ET showed an increasing trend. This pattern may reflect the changes in forest structure, related to the decline in the deciduous understory cover during the stand development. These results suggest that the water-saving effect of stomatal regulation and water-related factors mostly determined the trend and variability in ET, respectively. This may also imply an increase in the limitation of water availability on ET in young forests, associated with the structural and compositional changes related to forest growth.

2.
Sci Total Environ ; 917: 170532, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38296104

ABSTRACT

Semi-arid ecosystems have been shown to dominate over tropical forests in determining the trend and interannual variability of land carbon (C) sink. However, the magnitude and variability of ecosystem C balance remain largely uncertain for temperate semi-arid shrublands at the decadal scale. Using eddy-covariance and micro-meteorological measurements, we quantified the interannual variation in net ecosystem production (NEP) and its components, gross primary production (GPP) and ecosystem respiration (Reco, i.e., the sum of autotrophic and heterotrophic respiration), in a semi-arid shrubland of the Mu Us Desert, northern China during 2012-2022. This shrubland was an overall weak C sink over the 11 years (NEP = 12 ± 46 g C m-2 yr-1, mean ± SD). Annual NEP ranged from -66 to 77 g C m-2 yr-1, with the ecosystem frequently switching between being an annual C sink and a C source. GPP was twice as sensitive as Reco to prolonged dry seasons, leading to a close negative relationship between annual NEP and dry-season length (R2 = 0.80, P < 0.01). Annual GPP (R2 = 0.51, P = 0.01) and NEP (R2 = 0.58, P < 0.01) were positively correlated with annual rainfall. Negative annual NEP (the ecosystem being a C source) tended to occur when the dry season exceeded 50 d yr-1 or rainfall dropped below 280 mm yr-1. Increases in dry-season length strengthened the effects of low soil moisture relative to high vapor pressure deficit in constraining NEP. Both GPP and NEP were more closely correlated with C uptake amplitude (annual maximum daily values) than with C uptake period. These findings indicate that dry-season extension under climate change may reduce the long-term C sequestration in semi-arid shrublands. Plant species adapted to prolonged dry seasons should be used in ecosystem restoration in the studied area to enhance ecosystem functions.

3.
Nat Clim Chang ; 13(10): 1095-1104, 2023.
Article in English | MEDLINE | ID: mdl-37810622

ABSTRACT

Arctic wetlands are known methane (CH4) emitters but recent studies suggest that the Arctic CH4 sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH4 using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH4 occurred at all sites at rates of 0.092 ± 0.011 mgCH4 m-2 h-1 (mean ± s.e.), CH4 uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH4 uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH4 uptake by Arctic soils, providing a negative feedback to global climate change.

4.
Nat Commun ; 14(1): 3948, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402725

ABSTRACT

Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories - the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis - are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.


Subject(s)
Ecosystem , Plants , Climate Change , Plant Leaves , Phenotype
5.
Glob Chang Biol ; 28(15): 4605-4619, 2022 08.
Article in English | MEDLINE | ID: mdl-35474386

ABSTRACT

Recent evidence suggests that the relationships between climate and boreal tree growth are generally non-stationary; however, it remains uncertain whether the relationships between climate and carbon (C) fluxes of boreal forests are stationary or have changed over recent decades. In this study, we used continuous eddy-covariance and microclimate data over 21 years (1996-2016) from a 100-year-old trembling aspen stand in central Saskatchewan, Canada to assess the relationships between climate and ecosystem C and water fluxes. Over the study period, the most striking climatic event was a severe, 3-year drought (2001-2003). Gross ecosystem production (GEP) showed larger interannual variability than ecosystem respiration (Re ) over 1996-2016, but Re was the dominant component contributing to the interannual variation in net ecosystem production (NEP) during post-drought years. The interannual variations in evapotranspiration (ET) and C fluxes were primarily driven by temperature and secondarily by water availability. Two-factor linear models combining precipitation and temperature performed well in explaining the interannual variation in C and water fluxes (R2 > .5). The temperature sensitivities of all three C fluxes (NEP, GEP and Re ) declined over the study period (p < .05), and, as a result, the phenological controls on annual NEP weakened. The decreasing temperature sensitivity of the C fluxes may reflect changes in forest structure, related to the over-maturity of the aspen stand at 100 years of age, and exacerbated by high tree mortality following the severe 2001-2003 drought. These results may provide an early warning signal of driver shift or even an abrupt status shift of aspen forest dynamics. They may also imply a universal weakening in the relationship between temperature and GEP as forests become over-mature, associated with the structural and compositional changes that accompany forest ageing.


Subject(s)
Carbon , Taiga , Ecosystem , Forests , Saskatchewan , Trees , Water
6.
Nature ; 598(7881): 468-472, 2021 10.
Article in English | MEDLINE | ID: mdl-34552242

ABSTRACT

The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8.


Subject(s)
Carbon Cycle , Ecosystem , Plants/metabolism , Water Cycle , Carbon Dioxide/metabolism , Climate , Datasets as Topic , Humidity , Plants/classification , Principal Component Analysis
7.
New Phytol ; 229(5): 2586-2600, 2021 03.
Article in English | MEDLINE | ID: mdl-33118171

ABSTRACT

Evergreen conifer forests are the most prevalent land cover type in North America. Seasonal changes in the color of evergreen forest canopies have been documented with near-surface remote sensing, but the physiological mechanisms underlying these changes, and the implications for photosynthetic uptake, have not been fully elucidated. Here, we integrate on-the-ground phenological observations, leaf-level physiological measurements, near surface hyperspectral remote sensing and digital camera imagery, tower-based CO2 flux measurements, and a predictive model to simulate seasonal canopy color dynamics. We show that seasonal changes in canopy color occur independently of new leaf production, but track changes in chlorophyll fluorescence, the photochemical reflectance index, and leaf pigmentation. We demonstrate that at winter-dormant sites, seasonal changes in canopy color can be used to predict the onset of canopy-level photosynthesis in spring, and its cessation in autumn. Finally, we parameterize a simple temperature-based model to predict the seasonal cycle of canopy greenness, and we show that the model successfully simulates interannual variation in the timing of changes in canopy color. These results provide mechanistic insight into the factors driving seasonal changes in evergreen canopy color and provide opportunities to monitor and model seasonal variation in photosynthetic activity using color-based vegetation indices.


Subject(s)
Tracheophyta , Climate , Forests , North America , Photosynthesis , Plant Leaves , Seasons
8.
Sci Adv ; 6(41)2020 10.
Article in English | MEDLINE | ID: mdl-33028522

ABSTRACT

Soil respiration (R s) represents the largest flux of CO2 from terrestrial ecosystems to the atmosphere, but its spatial and temporal changes as well as the driving forces are not well understood. We derived a product of annual global R s from 2000 to 2014 at 1 km by 1 km spatial resolution using remote sensing data and biome-specific statistical models. Different from the existing view that climate change dominated changes in R s, we showed that land-cover change played a more important role in regulating R s changes in temperate and boreal regions during 2000-2014. Significant changes in R s occurred more frequently in areas with significant changes in short vegetation cover (i.e., all vegetation shorter than 5 m in height) than in areas with significant climate change. These results contribute to our understanding of global R s patterns and highlight the importance of land-cover change in driving global and regional R s changes.

9.
Glob Chang Biol ; 26(3): 1499-1518, 2020 03.
Article in English | MEDLINE | ID: mdl-31553826

ABSTRACT

Methane flux (FCH4 ) measurements using the eddy covariance technique have increased over the past decade. FCH4 measurements commonly include data gaps, as is the case with CO2 and energy fluxes. However, gap-filling FCH4 data are more challenging than other fluxes due to its unique characteristics including multidriver dependency, variabilities across multiple timescales, nonstationarity, spatial heterogeneity of flux footprints, and lagged influence of biophysical drivers. Some researchers have applied a marginal distribution sampling (MDS) algorithm, a standard gap-filling method for other fluxes, to FCH4 datasets, and others have applied artificial neural networks (ANN) to resolve the challenging characteristics of FCH4 . However, there is still no consensus regarding FCH4 gap-filling methods due to limited comparative research. We are not aware of the applications of machine learning (ML) algorithms beyond ANN to FCH4 datasets. Here, we compare the performance of MDS and three ML algorithms (ANN, random forest [RF], and support vector machine [SVM]) using multiple combinations of ancillary variables. In addition, we applied principal component analysis (PCA) as an input to the algorithms to address multidriver dependency of FCH4 and reduce the internal complexity of the algorithmic structures. We applied this approach to five benchmark FCH4 datasets from both natural and managed systems located in temperate and tropical wetlands and rice paddies. Results indicate that PCA improved the performance of MDS compared to traditional inputs. ML algorithms performed better when using all available biophysical variables compared to using PCA-derived inputs. Overall, RF was found to outperform other techniques for all sites. We found gap-filling uncertainty is much larger than measurement uncertainty in accumulated CH4 budget. Therefore, the approach used for FCH4 gap filling can have important implications for characterizing annual ecosystem-scale methane budgets, the accuracy of which is important for evaluating natural and managed systems and their interactions with global change processes.


Subject(s)
Ecosystem , Methane , Algorithms , Carbon Dioxide , Machine Learning , Principal Component Analysis
10.
Glob Chang Biol ; 26(2): 901-918, 2020 02.
Article in English | MEDLINE | ID: mdl-31529736

ABSTRACT

Climate extremes such as heat waves and droughts are projected to occur more frequently with increasing temperature and an intensified hydrological cycle. It is important to understand and quantify how forest carbon fluxes respond to heat and drought stress. In this study, we developed a series of daily indices of sensitivity to heat and drought stress as indicated by air temperature (Ta ) and evaporative fraction (EF). Using normalized daily carbon fluxes from the FLUXNET Network for 34 forest sites in North America, the seasonal pattern of sensitivities of net ecosystem productivity (NEP), gross ecosystem productivity (GEP) and ecosystem respiration (RE) in response to Ta and EF anomalies were compared for different forest types. The results showed that warm temperatures in spring had a positive effect on NEP in conifer forests but a negative impact in deciduous forests. GEP in conifer forests increased with higher temperature anomalies in spring but decreased in summer. The drought-induced decrease in NEP, which mostly occurred in the deciduous forests, was mostly driven by the reduction in GEP. In conifer forests, drought had a similar dampening effect on both GEP and RE, therefore leading to a neutral NEP response. The NEP sensitivity to Ta anomalies increased with increasing mean annual temperature. Drier sites were less sensitive to drought stress in summer. Natural forests with older stand age tended to be more resilient to the climate stresses compared to managed younger forests. The results of the Classification and Regression Tree analysis showed that seasons and ecosystem productivity were the most powerful variables in explaining the variation of forest sensitivity to heat and drought stress. Our results implied that the magnitude and direction of carbon flux changes in response to climate extremes are highly dependent on the seasonal dynamics of forests and the timing of the climate extremes.


Subject(s)
Droughts , Ecosystem , Carbon , Carbon Cycle , Climate Change , Forests , Hot Temperature , North America , Seasons
11.
Glob Chang Biol ; 25(9): 3056-3069, 2019 09.
Article in English | MEDLINE | ID: mdl-31055880

ABSTRACT

Long-term trends in ecosystem resource use efficiencies (RUEs) and their controlling factors are key pieces of information for understanding how an ecosystem responds to climate change. We used continuous eddy covariance and microclimate data over the period 1999-2017 from a 120-year-old black spruce stand in central Saskatchewan, Canada, to assess interannual variability, long-term trends, and key controlling factors of gross ecosystem production (GEP) and the RUEs of carbon (CUE = net primary production [NPP]/GEP), light (LUE = GEP/absorbed photosynthetic radiation [APAR]), and water (WUE = GEP/evapotranspiration [E]). At this site, annual GEP has shown an increasing trend over the 19 years (p < 0.01), which may be attributed to rising atmospheric CO2 concentration. Interannual variability in GEP, aside from its increasing trend, was most strongly related to spring temperatures. Associated with the significant increase in annual GEP were relatively small changes in NPP, APAR, and E, so that annual CUE showed a decreasing trend and annual LUE and WUE showed increasing trends over the 19 years. The long-term trends in the RUEs were related to the increasing CO2 concentration. Further analysis of detrended RUEs showed that their interannual variation was impacted most strongly by air temperature. Two-factor linear models combining CO2 concentration and air temperature performed well (R2 ~0.60) in simulating annual RUEs. LUE and WUE were positively correlated both annually and seasonally, while LUE and CUE were mostly negatively correlated. Our results showed divergent long-term trends among CUE, LUE, and WUE and highlighted the need to account for the combined effects of climatic controls and the 'CO2 fertilization effect' on long-term variations in RUEs. Since most RUE-based models rely primarily on one resource limitation, the observed patterns of relative change among the three RUEs may have important implications for RUE-based modeling of C fluxes.


Subject(s)
Ecosystem , Picea , Carbon Dioxide , Saskatchewan , Taiga
12.
Nat Ecol Evol ; 3(3): 501, 2019 03.
Article in English | MEDLINE | ID: mdl-30742108

ABSTRACT

In the version of this Article originally published, the wrong Supplementary Information pdf was uploaded, in which the figures did not correspond with those mentioned in the main text and the R code was not presented properly. This has now been replaced.

13.
Tree Physiol ; 38(7): 953-964, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29741658

ABSTRACT

Water stress has been identified as a key mechanism of the contemporary increase in tree mortality rates in northwestern North America. However, a detailed analysis of boreal tree hydrodynamics and their interspecific differences is still lacking. Here we examine the hydraulic behaviour of co-occurring larch (Larix laricina) and black spruce (Picea mariana), two characteristic boreal tree species, near the southern limit of the boreal ecozone in central Canada. Sap flux density (Js), concurrently recorded stem radius fluctuations and meteorological conditions are used to quantify tree hydraulic functioning and to scrutinize tree water-use strategies. Our analysis revealed asynchrony in the diel hydrodynamics of the two species with the initial rise in Js occurring 2 h earlier in larch than in black spruce. Interspecific differences in larch and black spruce crown architecture explained the observed asynchrony in their hydraulic functioning. Furthermore, the two species exhibited diverging stomatal regulation strategies with larch and black spruce employing relatively isohydric and anisohydric behaviour, respectively. Such asynchronous and diverging tree-level hydrodynamics provide new insights into the ecosystem-level complementarity in tree form and function, with implications for understanding boreal forests' water and carbon dynamics and their resilience to environmental stress.


Subject(s)
Larix/physiology , Picea/physiology , Trees/physiology , Water , Environment , Forests , Hydrodynamics , Plant Transpiration
14.
Nat Ecol Evol ; 1(2): 48, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28812604

ABSTRACT

The total uptake of carbon dioxide by ecosystems via photosynthesis (gross primary productivity, GPP) is the largest flux in the global carbon cycle. A key ecosystem functional property determining GPP is the photosynthetic capacity at light saturation (GPPsat), and its interannual variability (IAV) is propagated to the net land-atmosphere exchange of CO2. Given the importance of understanding the IAV in CO2 fluxes for improving the predictability of the global carbon cycle, we have tested a range of alternative hypotheses to identify potential drivers of the magnitude of IAV in GPPsat in forest ecosystems. Our results show that while the IAV in GPPsat within sites is closely related to air temperature and soil water availability fluctuations, the magnitude of IAV in GPPsat is related to stand age and biodiversity (R2 = 0.55, P < 0.0001). We find that the IAV of GPPsat is greatly reduced in older and more diverse forests, and is higher in younger forests with few dominant species. Older and more diverse forests seem to dampen the effect of climate variability on the carbon cycle irrespective of forest type. Preserving old forests and their diversity would therefore be beneficial in reducing the effect of climate variability on Earth's forest ecosystems.

15.
Sci Rep ; 7(1): 6780, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28755008

ABSTRACT

Biochar has been the focus of significant research efforts in agriculture, but little research has been conducted in forested ecosystems. Here, we assess CO2 and CH4 fluxes from a forest soil in response to biochar additions using a before-after-control-intervention experimental design. Soil CO2 and CH4 fluxes were measured over a series of wetting cycles by coupling soil mesocosms equipped with auto-chambers to a laser-based spectrometer for high-frequency measurements of gas fluxes and related soil processes. We found that soil CO2 fluxes were higher and CH4 fluxes were less negative (e.g. reduced CH4 uptake) for the biochar-amended soil compared to the no biochar condition. Furthermore, biochar improved soil infiltrability under wet conditions, and enhanced soil moisture levels under dry conditions. Biochar additions shifted the point of maximum soil respiration (i.e. soil CO2 efflux) to a slightly wetter soil moisture level. The point of maximum CH4 uptake was also shifted to a slightly wetter moisture level for soil with biochar. Overall differences in soil gas fluxes were found to be minor compared to the increase in soil carbon resulting from the biochar addition. Biochar may thus contribute to improved forest management through increases to soil carbon stocks and improved soil moisture levels.

16.
J Environ Manage ; 192: 203-214, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28161628

ABSTRACT

Nitrogen (N) fertilization of forests for increasing carbon sequestration and wood volume is expected to influence soil greenhouse gas (GHG) emissions, especially to increase N2O emissions. As biochar application is known to affect soil GHG emissions, we investigated the effect of biochar application, with and without N fertilization, to a forest soil on GHG emissions in a controlled laboratory study. We found that biochar application at high (10%) application rates increased CO2 and N2O emissions when applied without urea-N fertilizer. At both low (1%) and high biochar (10%) application rates CH4 consumption was reduced when applied without urea-N fertilizer. Biochar application with urea-N fertilization did not increase CO2 emissions compared to biochar amended soil without fertilizer. In terms of CO2-eq, the net change in GHG emissions was mainly controlled by CO2 emissions, regardless of treatment, with CH4 and N2O together accounting for less than 1.5% of the total emissions.


Subject(s)
Nitrogen , Soil , Carbon Dioxide , Fertilizers , Forests , Methane , Nitrous Oxide
17.
Nat Ecol Evol ; 1(2): 48, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-31745088

ABSTRACT

The total uptake of carbon dioxide by ecosystems via photosynthesis (gross primary productivity, GPP) is the largest flux in the global carbon cycle. A key ecosystem functional property determining GPP is the photosynthetic capacity at light saturation (GPPsat), and its interannual variability (IAV) is propagated to the net land-atmosphere exchange of CO2. Given the importance of understanding the IAV in CO2 fluxes for improving the predictability of the global carbon cycle, we have tested a range of alternative hypotheses to identify potential drivers of the magnitude of IAV in GPPsat in forest ecosystems. Our results show that while the IAV in GPPsat within sites is closely related to air temperature and soil water availability fluctuations, the magnitude of IAV in GPPsat is related to stand age and biodiversity (R2 = 0.55, P < 0.0001). We find that the IAV of GPPsat is greatly reduced in older and more diverse forests, and is higher in younger forests with few dominant species. Older and more diverse forests seem to dampen the effect of climate variability on the carbon cycle irrespective of forest type. Preserving old forests and their diversity would therefore be beneficial in reducing the effect of climate variability on Earth's forest ecosystems.

18.
J Environ Manage ; 152: 140-4, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25621388

ABSTRACT

Nitrogen (N) enrichment of biochar from both inorganic and organic waste N sources has the potential to add economic and environmental value through its use as a slow release N fertilizer. We investigated the sorption of N by, and its release from, biochar made at pyrolysis temperatures of 400, 500 and 600 °C from three feedstocks: poultry litter (PL with a carbon (C) to N ratio (C:N) of 14), softwood chips of spruce-pine-fir (SPF with a C:N of 470), and a 50:50 mixture of PL and SPF (PL/SPF). The prepared biochars were enriched with ammonium nitrate (AN) and urea ammonium nitrate (UAN). PL biochars had the lowest C content (50-56% C), but the highest pH (9.3-9.9), electrical conductivity (EC, 780-960 dS m(-1)), cation exchange capacity (CEC, 40-46 cmol kg(-1)), and N content (3.3-4.5%). While N content and hydrogen (H) to C atomic ratio (H:C) decreased with increasing pyrolysis temperature irrespective of the feedstock used, both pH and EC slightly increased with pyrolysis temperature for all feedstocks. The PL and SPF biochars showed similar H:C and also similar N sorption and N release at all pyrolysis temperatures. These biochars sorbed up to 5% N by mass, irrespective of the source of N. However, PL/SPF biochar performed poorly in sorbing N from either AN or UAN. Biochar H:C was found to be unrelated to N sorption rates, suggesting that physical adsorption on active surfaces was the main mechanism of N sorption in these biochars. There were minor differences between N sorbed from NO3-N and NH4-N among different biochars. Very small amounts of sorbed N (0.2-0.4 mg N g(-1) biochar) was released when extracted with 1 M KCl solution, indicating that the retained N was strongly held in complex bonds, more so for NH4-N because the release of NO3-N was 3-4 times greater than that of NH4-N. NH4-N sorption far exceeded the effective CEC of the biochars, thereby suggesting that most of the sorption may be due to physical entrapment of NH4(+) in biochar pores. The results of this study suggest that biochar can be used to remove excess N from poultry and dairy manure and be a good mitigation option for reducing N leaching and gaseous losses.


Subject(s)
Charcoal/chemistry , Environmental Pollutants/chemistry , Environmental Pollution/prevention & control , Environmental Restoration and Remediation/methods , Nitrogen/chemistry , Adsorption , Animals , Biomass , Carbon/analysis , Fertilizers/analysis , Hot Temperature , Manure/analysis , Nitrates/chemistry , Poultry , Urea/chemistry , Wood/chemistry
19.
Glob Chang Biol ; 21(1): 363-76, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24990223

ABSTRACT

Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy.


Subject(s)
Atmosphere/chemistry , Ecosystem , Forests , Models, Biological , Plant Physiological Phenomena , Seasons , Europe , North America , Photosynthesis/physiology
20.
Oecologia ; 176(3): 703-14, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25182932

ABSTRACT

Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.


Subject(s)
Forests , Models, Biological , Photosynthesis , Trees/metabolism , Weather , British Columbia , Circadian Rhythm , Saskatchewan , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...