Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Metabol Open ; 20: 100264, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38115864

ABSTRACT

This study aimed to better understand the relationship between bone-related biomarkers and nutrient stress in the context of metabolic health. We investigated plasma osteocalcin (OC) during an oral glucose challenge and experimental hyperinsulinemia in Type 2 diabetes (T2DM) and lean healthy controls (LHC). Older individuals with obesity and T2DM (n = 9) and young LHCs (n = 9) underwent a 75g oral glucose tolerance test (OGTT) and a 40 mU/m2/min hyperinsulinemic-euglycemic clamp. Plasma undercarboxylated OC (ucOC) and total OC were measured at baseline, 60mins, and 120mins of the OGTT and clamp via ELISA. In addition, plasma alkaline phosphatase (ALP), leptin, adiponectin, Vitamin D and insulin were measured and indices of insulin sensitivity and ß-cell function were derived. The T2DM group had lower (p<0.05) ucOC and ucOC:total OC ratio than LHC during both the OGTT and clamp. Further, baseline ucOC was positively correlated to indices of ß-cell function and negatively correlated to indices of insulin resistance when both groups were combined (all p<0.05). Suppression of OC observed in T2DM may be related to glucose intolerance and insulin resistance. Similarly, our data suggest that the observed phenotypic differences between groups are likely a product of long-term glucose dysregulation rather than acute flux in glucose or insulin.

2.
J Appl Physiol (1985) ; 135(4): 849-862, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37675469

ABSTRACT

Nearly 40% of Americans have obesity and are at increased risk for developing type 2 diabetes. Skeletal muscle is responsible for >80% of insulin-stimulated glucose uptake that is attenuated by the inflammatory milieu of obesity and augmented by aerobic exercise. The receptor for advanced glycation endproducts (RAGE) is an inflammatory receptor directly linking metabolic dysfunction with inflammation. Circulating soluble isoforms of RAGE (sRAGE) formed either by proteolytic cleavage (cRAGE) or alternative splicing (esRAGE) act as decoys for RAGE ligands, thereby counteracting RAGE-mediated inflammation. We aimed to determine if RAGE expression or alternative splicing of RAGE is altered by obesity in muscle, and whether acute aerobic exercise (AE) modifies RAGE and sRAGE. Young (20-34 yr) participants without [n = 17; body mass index (BMI): 22.6 ± 2.6 kg/m2] and with obesity (n = 7; BMI: 32.8 ± 2.9 kg/m2) performed acute aerobic exercise (AE) at 40%, 65%, or 80% of maximal aerobic capacity (V̇o2max; mL/kg/min) on separate visits. Blood was taken before and 30 min after each AE bout. Muscle biopsy samples were taken before, 30 min, and 3 h after the 80% V̇o2max AE bout. Individuals with obesity had higher total RAGE and esRAGE mRNA and RAGE protein (P < 0.0001). In addition, RAGE and esRAGE transcripts correlated to transcripts of the NF-κB subunit P65 (P < 0.05). There was no effect of AE on total RAGE or esRAGE transcripts, or RAGE protein (P > 0.05), and AE tended to decrease circulating sRAGE in particular at lower intensities of exercise. RAGE expression is exacerbated in skeletal muscle with obesity, which may contribute to muscle inflammation via NF-κB. Future work should investigate the consequences of increased skeletal muscle RAGE on the development of obesity-related metabolic dysfunction and potential mitigating strategies.NEW & NOTEWORTHY This study is the first to investigate the effects of aerobic exercise intensity on circulating sRAGE isoforms, muscle RAGE protein, and muscle RAGE splicing. sRAGE isoforms tended to diminish with exercise, although this effect was attenuated with increasing exercise intensity. Muscle RAGE protein and gene expression were unaffected by exercise. However, individuals with obesity displayed nearly twofold higher muscle RAGE protein and gene expression, which positively correlated with expression of the P65 subunit of NF-κB.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Young Adult , Exercise , Inflammation , Muscle, Skeletal , NF-kappa B , Receptor for Advanced Glycation End Products
3.
J Appl Physiol (1985) ; 132(2): 357-366, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34941434

ABSTRACT

Thioredoxin-interacting protein (TXNIP) negatively effects the redox state and growth signaling via its interactions with thioredoxin (TRX) and regulated in development and DNA damage response 1 (REDD1), respectively. TXNIP expression is downregulated by pathways activated during aerobic exercise (AE), via posttranslational modifications (PTMs; serine phosphorylation and ubiquitination). The purpose of this investigation was to determine the effects of acute AE on TXNIP expression, posttranslational modifications, and its interacting partners, REDD1 and TRX. Fifteen healthy adults performed 30 min of aerobic exercise (80% V̇o2max) with muscle biopsies taken before, immediately following, and 3 h following the exercise bout. To explore potential mechanisms underlying our in vivo findings, primary human myotubes were exposed to two models of exercise, electrical pulse stimulation (EPS) and palmitate-forskolin-ionomycin (PFI). Immediately following exercise, TXNIP protein decreased, but returned to preexercise levels 3 h after exercise. These results were replicated in our PFI exercise model only. Although not statistically significant, there was a trending main effect in serine-phosphorylation status of TXNIP (P = 0.07) immediately following exercise. REDD1 protein decreased 3 h after exercise. AE had no effect on TRX protein expression, gene expression, or the activity of its reducing enzyme, thioredoxin reductase. Consequently, AE had no effect on the TRX: TXNIP interaction. Our results indicate that AE leads to acute reductions in TXNIP and REDD1 protein expression. However, these changes did not result in alterations in the TRX: TXNIP interaction and could not be entirely explained by alterations in TXNIP PTMs or changes in TRX expression or activity.NEW & NOTEWORTHY Aerobic exercise is an effective tool in the prevention and treatment of several chronic metabolic diseases. However, the mechanisms through which these benefits are conferred have yet to be fully elucidated. Our data reveal a novel effect of aerobic exercise on reducing the protein expression of molecular targets that negatively impact redox and insulin/growth signaling in skeletal muscle. These findings contribute to the expanding repository of molecular signatures provoked by aerobic exercise.


Subject(s)
Carrier Proteins , Exercise , Muscle, Skeletal , Transcription Factors/metabolism , Carrier Proteins/metabolism , Humans , Insulin/metabolism , Muscle, Skeletal/metabolism , Oxidation-Reduction , Signal Transduction
4.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R181-R190, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29046313

ABSTRACT

Skeletal muscle insulin resistance is a hallmark of Type 2 diabetes (T2DM) and may be exacerbated by protein modifications by methylglyoxal (MG), known as dicarbonyl stress. The glyoxalase enzyme system composed of glyoxalase 1/2 (GLO1/GLO2) is the natural defense against dicarbonyl stress, yet its protein expression, activity, and regulation remain largely unexplored in skeletal muscle. Therefore, this study investigated dicarbonyl stress and the glyoxalase enzyme system in the skeletal muscle of subjects with T2DM (age: 56 ± 5 yr.; BMI: 32 ± 2 kg/m2) compared with lean healthy control subjects (LHC; age: 27 ± 1 yr.; BMI: 22 ± 1 kg/m2). Skeletal muscle biopsies obtained from the vastus lateralis at basal and insulin-stimulated states of the hyperinsulinemic (40 mU·m-2·min-1)-euglycemic (5 mM) clamp were analyzed for proteins related to dicarbonyl stress and glyoxalase biology. At baseline, T2DM had increased carbonyl stress and lower GLO1 protein expression (-78.8%), which inversely correlated with BMI, percent body fat, and HOMA-IR, while positively correlating with clamp-derived glucose disposal rates. T2DM also had lower NRF2 protein expression (-31.6%), which is a positive regulator of GLO1, while Keap1 protein expression, a negative regulator of GLO1, was elevated (207%). Additionally, insulin stimulation during the clamp had a differential effect on NRF2, Keap1, and MG-modified protein expression. These data suggest that dicarbonyl stress and the glyoxalase enzyme system are dysregulated in T2DM skeletal muscle and may underlie skeletal muscle insulin resistance. Whether these phenotypic differences contribute to the development of T2DM warrants further investigation.


Subject(s)
Diabetes Mellitus, Type 2/enzymology , Insulin Resistance , Lactoylglutathione Lyase/metabolism , Protein Carbonylation , Quadriceps Muscle/enzymology , Adult , Aldehyde Reductase/metabolism , Blood Glucose/metabolism , Case-Control Studies , Female , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Humans , Insulin/blood , Kelch-Like ECH-Associated Protein 1/metabolism , Male , Middle Aged , NF-E2-Related Factor 2/metabolism , Triose-Phosphate Isomerase/metabolism
5.
Am J Physiol Endocrinol Metab ; 313(6): E631-E640, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28811295

ABSTRACT

The soluble receptor for advanced glycation end products (sRAGE) may be protective against inflammation associated with obesity and type 2 diabetes (T2DM). The aim of this study was to determine the distribution of sRAGE isoforms and whether sRAGE isoforms are associated with risk of T2DM development in subjects spanning the glucose tolerance continuum. In this retrospective analysis, circulating total sRAGE and endogenous secretory RAGE (esRAGE) were quantified via ELISA, and cleaved RAGE (cRAGE) was calculated in 274 individuals stratified by glucose tolerance status (GTS) and obesity. Group differences were probed by ANOVA, and multivariate ordinal logistic regression was used to test the association between sRAGE isoform concentrations and the proportional odds of developing diabetes, vs. normal glucose tolerance (NGT) or impaired glucose tolerance (IGT). When stratified by GTS, total sRAGE, cRAGE, and esRAGE were all lower with IGT and T2DM, while the ratio of cRAGE to esRAGE (cRAGE:esRAGE) was only lower (P < 0.01) with T2DM compared with NGT. When stratified by GTS and obesity, cRAGE:esRAGE was higher with obesity and lower with IGT (P < 0.0001) compared with lean, NGT. In ordinal logistic regression models, greater total sRAGE (odds ratio, 0.91; P < 0.01) and cRAGE (odds ratio, 0.84; P < 0.01) were associated with lower proportional odds of developing T2DM. Reduced values of sRAGE isoforms observed with both obesity and IGT are independently associated with greater proportional odds of developing T2DM. The mechanisms by which each respective isoform contributes to obesity and insulin resistance may reveal novel treatment strategies for diabetes.


Subject(s)
Diabetes Mellitus, Type 2/blood , Glucose Intolerance/blood , Obesity/blood , Receptor for Advanced Glycation End Products/blood , Adolescent , Adult , Aged , Aging/metabolism , Blood Glucose/analysis , Body Mass Index , Diabetes Mellitus, Type 2/complications , Disease Progression , Female , Glucose Intolerance/complications , Glucose Tolerance Test , Glycated Hemoglobin/analysis , Humans , Isomerism , Male , Middle Aged , Obesity/complications , Overweight/blood , Overweight/complications , Receptor for Advanced Glycation End Products/chemistry , Retrospective Studies , Young Adult
6.
Redox Biol ; 13: 288-300, 2017 10.
Article in English | MEDLINE | ID: mdl-28600985

ABSTRACT

Insulin resistance promotes vascular endothelial dysfunction and subsequent development of cardiovascular disease. Previously we found that skeletal muscle arteriolar flow-induced dilation (FID) was reduced following a hyperinsulinemic clamp in healthy adults. Therefore, we hypothesized that hyperinsulinemia, a hallmark of insulin resistance, contributes to microvascular endothelial cell dysfunction via inducing oxidative stress that is mediated by NADPH oxidase (Nox) system. We examined the effect of insulin, at levels that are comparable with human hyperinsulinemia on 1) FID of isolated arterioles from human skeletal muscle tissue in the presence and absence of Nox inhibitors and 2) human adipose microvascular endothelial cell (HAMECs) expression of nitric oxide (NO), endothelial NO synthase (eNOS), and Nox-mediated oxidative stress. In six lean healthy participants (mean age 25.5±1.6 y, BMI 21.8±0.9), reactive oxygen species (ROS) were increased while NO and arteriolar FID were reduced following 60min of ex vivo insulin incubation. These changes were reversed after co-incubation with the Nox isoform 2 (Nox2) inhibitor, VAS2870. In HAMECs, insulin-induced time-dependent increases in Nox2 expression and P47phox phosphorylation were echoed by elevations of superoxide production. In contrast, phosphorylation of eNOS and expression of superoxide dismutase (SOD2 and SOD3) isoforms showed a biphasic response with an increased expression at earlier time points followed by a steep reduction phase. Insulin induced eNOS uncoupling that was synchronized with a drop of NO and a surge of ROS production. These effects were reversed by Tempol (SOD mimetic), Tetrahydrobiopterin (BH4; eNOS cofactor), and VAS2870. Finally, insulin induced nitrotyrosine formation which was reversed by inhibiting NO or superoxide generation. In conclusions, hyperinsulinemia may reduce FID via inducing Nox2-mediated superoxide production in microvascular endothelial cells which reduce the availability of NO and enhances peroxynitrite formation. Therefore, the Nox2 pathway should be considered as a target for the prevention of oxidative stress-associated endothelial dysfunction during hyperinsulinemia.


Subject(s)
Arterioles/metabolism , Endothelial Cells/metabolism , Hyperinsulinism/metabolism , NADPH Oxidase 2/metabolism , Reactive Oxygen Species/metabolism , Vasodilation , Adult , Arterioles/cytology , Arterioles/physiology , Benzoxazoles/pharmacology , Cells, Cultured , Endothelial Cells/drug effects , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Enzyme Inhibitors/pharmacology , Humans , Insulin/pharmacology , Muscle, Skeletal/blood supply , NADPH Oxidase 2/antagonists & inhibitors , NADPH Oxidase 2/genetics , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Oxidation-Reduction , Oxidative Stress , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Triazoles/pharmacology
7.
Physiol Rep ; 4(16)2016 08.
Article in English | MEDLINE | ID: mdl-27796268

ABSTRACT

Hyperinsulinemia is a hallmark of insulin resistance-associated metabolic disorders. Under physiological conditions, insulin maintains a balance between nitric oxide (NO) and, the potent vasoconstrictor, endothelin-1 (ET-1). We tested the hypothesis that acute hyperinsulinemia will preferentially augment ET-1 protein expression, disrupt the equilibrium between ET-1 expression and endothelial NO synthase (eNOS) activation, and subsequently impair flow-induced dilation (FID) in human skeletal muscle arterioles. Skeletal muscle biopsies were performed on 18 lean, healthy controls (LHCs) and 9 older, obese, type 2 diabetics (T2DM) before and during (120 min) a 40 mU/m2/min hyperinsulinemic-euglycemic (5 mmol/L) clamp. Skeletal muscle protein was analyzed for ET-1, eNOS, phosphorylated eNOS (p-eNOS), and ET-1 receptor type A (ETAR) and B (ETBR) expression. In a subset of T2DM (n = 6) and LHCs (n = 5), FID of isolated skeletal muscle arterioles was measured. Experimental hyperinsulinemia impaired FID (% of dilation at ∆60 pressure gradient) in LHCs (basal: 74.2 ± 2.0; insulin: 57.2 ± 3.3, P = 0.003) and T2DM (basal: 62.1 ± 3.6; insulin: 48.9 ± 3.6, P = 0.01). Hyperinsulinemia increased ET-1 protein expression in LHCs (0.63 ± 0.04) and T2DM (0.86 ± 0.06) compared to basal conditions (LHCs: 0.44 ± 0.05, P = 0.007; T2DM: 0.69 ± 0.06, P = 0.02). Insulin decreased p-eNOS (serine 1177) only in T2DM (basal: 0.28 ± 0.07; insulin: 0.17 ± 0.04, P = 0.03). In LHCs, hyperinsulinemia disturbed the balance between ETAR and ETBR receptors known to mediate vasoconstrictor and vasodilator actions of ET-1, respectively. Moreover, hyperinsulinemia markedly impaired plasma NO concentration in both LHCs and T2DM These data suggest that hyperinsulinemia disturbs the vasomotor balance in human skeletal muscle favoring vasoconstrictive pathways, eventually impairing arteriolar vasodilation.


Subject(s)
Arterioles/drug effects , Endothelin-1/physiology , Hyperinsulinism/metabolism , Hyperinsulinism/physiopathology , Insulin/pharmacology , Muscle, Skeletal/blood supply , Vasodilation/drug effects , Adult , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Endothelin-1/antagonists & inhibitors , Endothelin-1/metabolism , Female , Humans , Hyperinsulinism/complications , Middle Aged , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Obesity/complications , Obesity/physiopathology , Vasoconstriction/drug effects , Vasoconstriction/physiology
8.
Am J Physiol Regul Integr Comp Physiol ; 309(8): R855-63, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26269521

ABSTRACT

The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin/pharmacology , Multiprotein Complexes/metabolism , Muscle, Skeletal/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Adult , Case-Control Studies , Female , Humans , Male , Mechanistic Target of Rapamycin Complex 1 , Middle Aged , Multiprotein Complexes/genetics , Muscle, Skeletal/drug effects , TOR Serine-Threonine Kinases/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...