Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Neurosci Biobehav Rev ; 161: 105668, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608826

ABSTRACT

Neuroinflammation accompanies several brain disorders, either as a secondary consequence or as a primary cause and may contribute importantly to disease pathogenesis. Neurosteroids which act as Positive Steroid Allosteric GABA-A receptor Modulators (Steroid-PAM) appear to modulate neuroinflammation and their levels in the brain may vary because of increased or decreased local production or import from the systemic circulation. The increased synthesis of steroid-PAMs is possibly due to increased expression of the mitochondrial cholesterol transporting protein (TSPO) in neuroinflammatory tissue, and reduced production may be due to changes in the enzymatic activity. Microglia and astrocytes play an important role in neuroinflammation, and their production of inflammatory mediators can be both activated and inhibited by steroid-PAMs and GABA. What is surprising is the finding that both allopregnanolone, a steroid-PAM, and golexanolone, a novel GABA-A receptor modulating steroid antagonist (GAMSA), can inhibit microglia and astrocyte activation and normalize their function. This review focuses on the role of steroid-PAMs in neuroinflammation and their importance in new therapeutic approaches to CNS and liver disease.


Subject(s)
Neuroinflammatory Diseases , Pregnanolone , Pregnanolone/pharmacology , Pregnanolone/metabolism , Humans , Animals , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Microglia/drug effects , Microglia/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , GABA-A Receptor Antagonists/pharmacology
2.
J Intern Med ; 294(3): 281-294, 2023 09.
Article in English | MEDLINE | ID: mdl-37518841

ABSTRACT

The prevalence of cognitive dysfunction, dementia, and neurodegenerative disorders such as Alzheimer's disease (AD) is increasing in parallel with an aging population. Distinct types of chronic stress are thought to be instrumental in the development of cognitive impairment in central nervous system (CNS) disorders where cognitive impairment is a major unmet medical need. Increased GABAergic tone is a mediator of stress effects but is also a result of other factors in CNS disorders. Positive GABA-A receptor modulating stress and sex steroids (steroid-PAMs) such as allopregnanolone (ALLO) and medroxyprogesterone acetate can provoke impaired cognition. As such, ALLO impairs memory and learning in both animals and humans. In transgenic AD animal studies, continuous exposure to ALLO at physiological levels impairs cognition and increases degenerative AD pathology, whereas intermittent ALLO injections enhance cognition, indicating pleiotropic functions of ALLO. We have shown that GABA-A receptor modulating steroid antagonists (GAMSAs) can block the acute negative cognitive impairment of ALLO on memory in animal studies and in patients with cognitive impairment due to hepatic encephalopathy. Here we describe disorders affected by steroid-PAMs and opportunities to treat these adverse effects of steroid-PAMs with novel GAMSAs.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurosteroids , Animals , Humans , Aged , Receptors, GABA-A , Neurosteroids/therapeutic use , Cognitive Dysfunction/drug therapy , Pregnanolone/pharmacology , Alzheimer Disease/drug therapy , gamma-Aminobutyric Acid/pharmacology
3.
CNS Neurosci Ther ; 28(11): 1861-1874, 2022 11.
Article in English | MEDLINE | ID: mdl-35880480

ABSTRACT

AIMS: Hyperammonemic rats show peripheral inflammation, increased GABAergic neurotransmission and neuroinflammation in cerebellum and hippocampus which induce motor incoordination and cognitive impairment. Neuroinflammation enhances GABAergic neurotransmission in cerebellum by enhancing the TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways. Golexanolone reduces GABAA receptors potentiation by allopregnanolone. This work aimed to assess if treatment of hyperammonemic rats with golexanolone reduces peripheral inflammation and neuroinflammation and restores cognitive and motor function and to analyze underlying mechanisms. METHODS: Rats were treated with golexanolone and effects on peripheral inflammation, neuroinflammation, TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways, and cognitive and motor function were analyzed. RESULTS: Hyperammonemic rats show increased TNFα and reduced IL-10 in plasma, microglia and astrocytes activation in cerebellum and hippocampus, and impaired motor coordination and spatial and short-term memories. Treating hyperammonemic rats with golexanolone reversed changes in peripheral inflammation, microglia and astrocytes activation and restored motor coordination and spatial and short-term memory. This was associated with reversal of the hyperammonemia-enhanced activation in cerebellum of the TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways. CONCLUSION: Reducing GABAA receptors activation with golexanolone reduces peripheral inflammation and neuroinflammation and improves cognitive and motor function in hyperammonemic rats. The effects identified would also occur in patients with hepatic encephalopathy and, likely, in other pathologies associated with neuroinflammation.


Subject(s)
Hyperammonemia , Symporters , Animals , Cognition , GABA-A Receptor Antagonists , Glutaminase/metabolism , Hyperammonemia/drug therapy , Hyperammonemia/metabolism , Inflammation/metabolism , Interleukin-10/metabolism , Neuroinflammatory Diseases , Pregnanolone , Rats , Rats, Wistar , Receptors, GABA-A , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , gamma-Aminobutyric Acid/metabolism
4.
Pharmacol Res Perspect ; 7(3): e00472, 2019 06.
Article in English | MEDLINE | ID: mdl-31065377

ABSTRACT

Depression like many diseases is pleiotropic but unlike cancer and Alzheimer's disease for example, is still largely stigmatized and falls into the dark shadows of human illness. The failure of depression to be in the spotlight for successful treatment options is inherent in the complexity of the disease(s), flawed clinical diagnosis, overgeneralization of the illness, inadequate and biased clinical trial design, restrictive and biased inclusion/exclusion criteria, lack of approved/robust biomarkers, expensive imaging technology along with few advances in neurobiological hypotheses in decades. Clinical trial studies summitted to the regulatory agencies (FDA/EMA) for approval, have continually failed to show significant differences between active and placebo. For decades, we have acknowledged this failure, despite vigorous debated by all stakeholders to provide adequate answers to this escalating problem, with only a few new antidepressants approved in the last 20 years with equivocal efficacy, little improvement in side effects or onset of efficacy. It is also clear that funding and initiatives for mental illness lags far behind other life-treating diseases. Thus, it is no surprise we have not achieved much success in the last 50 years in treating depression, but we are accountable for the many failures and suboptimal treatment. This review will therefore critically address where we have failed and how future advances in medical science offers a glimmer of light for the patient and aid our future understanding of the neurobiology and pathophysiology of the disease, enabling transformative therapies for the treatment of depressive disorders.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder/drug therapy , Antidepressive Agents/pharmacology , Clinical Trials as Topic , Depressive Disorder/metabolism , Humans , Molecular Targeted Therapy , Prognosis , Treatment Failure
6.
Curr Opin Pharmacol ; 35: 89-93, 2017 08.
Article in English | MEDLINE | ID: mdl-28864032

ABSTRACT

This article is in memory of Professor Norman Bowery (1944-2016). Norman was a pharmacologist who spent most of his career researching the pharmacology of γ-aminobutyric acid (GABA). He discovered a novel metabotropic receptor subtype, GABAB, that is pharmacologically, and structurally different from the original ionotropic receptor now designated as GABAA. In his research he also studied the neurotransmitters glutamate and substance P, two molecules whose release in parts of the spinal cord is inhibited by baclofen a GABAB receptor agonist. Norman was interested in the therapeutic potential of interacting with the GABAB receptor, in particular spasticity, pain and absence epilepsy.


Subject(s)
Pharmacology/history , Receptors, GABA-B/history , History, 20th Century , History, 21st Century , gamma-Aminobutyric Acid
9.
Synapse ; 61(2): 72-7, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17117425

ABSTRACT

We examined the effect of the administration of the selective serotonin reuptake inhibitors (SSRIs) fluoxetine, citalopram, and paroxetine on the activity of spontaneously active dopamine (DA) neurons in the substantia nigra pars compacta (SNC) and ventral tegmental area (VTA) in anesthetized adult male Sprague-Dawley rats. This was accomplished using the technique of in vivo extracellular recording. A single injection of 2.5 mg/kg (i.p.) of fluoxetine significantly increased the number of spontaneously active SNC and VTA DA neurons. In contrast, a single injection of either 1 mg/kg (i.p.) of paroxetine or 5 mg/kg of fluoxetine significantly increased the number of spontaneously active VTA DA neurons. The repeated administration (one injection per day for 21 days) of all of the SSRIs produced a significant increase in the number of spontaneously active VTA DA neurons. Overall, our results indicate that the systemic administration of SSRI alters the activity of midbrain DA neurons with differential effects on VTA compared with SNC DA neurons.


Subject(s)
Citalopram/administration & dosage , Dopamine/metabolism , Fluoxetine/administration & dosage , Mesencephalon/cytology , Neurons/drug effects , Paroxetine/administration & dosage , Selective Serotonin Reuptake Inhibitors/administration & dosage , Action Potentials/drug effects , Action Potentials/physiology , Analysis of Variance , Animals , Drug Administration Schedule , Male , Neurons/metabolism , Rats , Rats, Sprague-Dawley
10.
J Med Chem ; 49(13): 3757-8, 2006 Jun 29.
Article in English | MEDLINE | ID: mdl-16789730

ABSTRACT

A series of 3-imino-2-indolones are the first published, high-affinity antagonists of the galanin GAL3 receptor. One example, 1,3-dihydro-1-phenyl-3-[[3-(trifluoromethyl)phenyl]imino]-2H-indol-2-one (9), was shown to have high affinity for the human GAL3 receptor (Ki=17 nM) and to be highly selective for GAL3 over a broad panel of targets, including GAL1 and GAL2. Compound 9 was also shown to be an antagonist in a human GAL3 receptor functional assay (Kb=29 nM).


Subject(s)
Imines/chemical synthesis , Indoles/chemical synthesis , Receptor, Galanin, Type 3/antagonists & inhibitors , Animals , Binding, Competitive , Brain/metabolism , COS Cells , Chlorocebus aethiops , Cyclic AMP/biosynthesis , Humans , Imines/pharmacokinetics , Imines/pharmacology , Indoles/pharmacokinetics , Indoles/pharmacology , Ligands , Radioligand Assay , Rats , Receptor, Galanin, Type 1/drug effects , Receptor, Galanin, Type 2/drug effects , Stereoisomerism , Structure-Activity Relationship
11.
Synapse ; 59(8): 502-12, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16565966

ABSTRACT

This study examined the effect of the acute and chronic administration of the 5-HT(2B/2C) receptor antagonist N-(1-methyl-5-indolyl)-N'-(3-pyridyl) urea hydrochloride (SB-200646A) on the activity of spontaneously active DA cells in the substantia nigra pars compacta (SNC) and ventral tegmental area (VTA) in anesthetized, male Sprague-Dawley rats. This was accomplished using in vivo extracellular single cell recording. The i.v. administration of 4-16 mg/kg of SB-200646A significantly increased the firing rate and % events as bursts in spontaneously active VTA DA neurons and significantly increased the % events as burst in SNC DA neurons. The acute i.p. administration of 20 and 40 mg/kg of SB-200646A significantly increased the number of spontaneously active VTA DA neurons when compared with vehicle-treated controls. The acute administration of 10 mg/kg of SB-200646A significantly increased the coefficient of variation in spontaneously active SNC and DA neurons when compared with vehicle-treated controls. However, the acute i.p. administration of 20 mg/kg of SB-200646A significantly decreased the degree of bursting of VTA DA neurons. Similary, chronic i.p. administration of 10 mg/kg of SB-200646 did not significantly alter firing, whereas chronic administration of 20 mg/kg of SB-200646A or 20 mg/kg of clozapine significantly decreased the number of spontaneously active VTA DA neurons when compared with vehicle-treated controls. The SB-200646A-induced decrease in the number of spontaneously active VTA DA neurons was reversed by the i.v. administration of (+)-apomorphine or (-)-baclofen. The chronic i.p. administration of either 10 or 20 mg/kg of SB-200646A did not significantly alter the firing pattern of spontaneously active SNC DA neurons. However, the chronic administration of 20 mg/kg of SB-200646A significantly increased the degree of bursting in VTA DA neurons when compared with vehicle. Overall, the acute and chronic administration of SB-200646A produces in vivo electrophysiological effects, resembling that of atypical antipsychotic drugs.


Subject(s)
Indoles/pharmacology , Mesencephalon/drug effects , Neurons/drug effects , Serotonin 5-HT2 Receptor Antagonists , Serotonin Antagonists/pharmacology , Urea/analogs & derivatives , Action Potentials/drug effects , Animals , Dopamine/metabolism , Electrophysiology , Male , Mesencephalon/metabolism , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Time Factors , Urea/pharmacology
12.
Proc Natl Acad Sci U S A ; 102(48): 17489-94, 2005 Nov 29.
Article in English | MEDLINE | ID: mdl-16287967

ABSTRACT

The neuropeptide galanin mediates its effects through the receptor subtypes Gal(1), Gal(2), and Gal(3) and has been implicated in anxiety- and depression-related behaviors. Nevertheless, the receptor subtypes relevant to these behaviors are not known because of the lack of available galanin-selective ligands. In this article, we use behavioral, neurochemical, and electrophysiological approaches to investigate the anxiolytic- and antidepressant-like effects of two potent small-molecule, Gal(3)-selective antagonists, SNAP 37889 and the more soluble analog SNAP 398299. Acute administration of SNAP 37889 or SNAP 398299 enhanced rat social interaction. Furthermore, acute SNAP 37889 was also shown to reduce guinea pig vocalizations after maternal separation, to attenuate stress-induced hyperthermia in mice, to increase punished drinking in rats, and to decrease immobility and increase swimming time during forced swim tests with rats. Moreover, SNAP 37889 increased the social interaction time after 14 days of treatment and maintained its antidepressant effects during forced swim tests with rats after 21 days of treatment. In microdialysis studies, SNAP 37889 partially antagonized the galanin-evoked reduction in hippocampal serotonin (5-hydroxytryptamine, 5-HT), as did the 5-HT(1A) receptor antagonist WAY100635. Their combination produced a complete reversal of the effect of galanin. SNAP 398299 partially reversed the galanin-evoked inhibition of dorsal raphe cell firing and galanin-evoked hyperpolarizing currents. These results indicate that Gal(3)-selective antagonists produce anxiolytic- and antidepressant-like effects, possibly by attenuating the inhibitory influence of galanin on 5-HT transmission at the level of the dorsal raphe nucleus.


Subject(s)
Behavior, Animal/drug effects , Hippocampus/metabolism , Indoles/pharmacology , Pyrrolidines/pharmacology , Receptor, Galanin, Type 3/antagonists & inhibitors , Analysis of Variance , Animals , Cell Line , Electrophysiology , Guinea Pigs , Humans , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Piperazines/pharmacology , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Social Behavior , Vocalization, Animal/drug effects
13.
Curr Opin Pharmacol ; 3(1): 90-7, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12550748

ABSTRACT

Trace amines are attracting attention as neurotransmitters because they are believed to play a role in human disorders such as schizophrenia, depression, attention deficit disorder and Parkinson's disease. Research to date is promising and confirms the need for continuing work to forge the way for new drug discovery.


Subject(s)
Biogenic Amines/therapeutic use , Drug Delivery Systems/methods , Receptors, Cell Surface/therapeutic use , Animals , Biogenic Amines/agonists , Biogenic Amines/antagonists & inhibitors , Humans , Mental Disorders/drug therapy , Mental Disorders/metabolism , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Receptors, Cell Surface/agonists , Receptors, Cell Surface/antagonists & inhibitors
14.
Synapse ; 46(3): 129-39, 2002 Dec 01.
Article in English | MEDLINE | ID: mdl-12325040

ABSTRACT

In this study, we examined the effect of the acute and chronic administration of the selective 5-HT2C receptor antagonist SB-243213 (SB) on the activity of spontaneously active dopamine (DA) cells in the substantia nigra pars compacta (SNC) and ventral tegmental area (VTA) in anesthetized, albino, male Sprague-Dawley rats. This was accomplished using the technique of in vivo extracellular single cell recording. The acute i.v. administration of SB-243213 (0.025-3.2 mg/kg) did not significantly alter the basal firing rate or pattern of either spontaneously active SNC or VTA DA neurons compared to vehicle-treated controls. The acute i.p. administration of either 1 or 10 mg/kg of SB-243213 did not significantly alter the number of spontaneously active DA cells in the SNC or VTA compared to vehicle-treated controls, whereas the 3 mg/kg dose only significantly decreased the number of spontaneously active VTA DA neurons. Overall, the 1 mg/kg dose of SB-243213 did not significantly alter the firing pattern of either SNC or VTA DA neurons compared to vehicle-treated controls. In contrast, the 3 mg/kg dose significantly altered the firing pattern of SNC DA neurons, whereas the 10 mg/kg dose altered the firing pattern of DA neurons in both the SNC and VTA. The repeated i.p. administration (21 days) of 1, 3, and 10 mg/kg of SB-243213 or 20 mg/kg of clozapine produced a significant decrease in the number of spontaneously active DA cells in the VTA compared to vehicle-treated controls. The decrease in the number of spontaneously active VTA DA cells was not reversed by the i.v. administration of (+)-apomorphine (50 microg/kg). The repeated administration of either 1 or 3 mg/kg of SB-243213 had minimal effects on the firing pattern of either SNC or VTA DA neurons. In contrast, the firing pattern of VTA DA neurons was significantly altered by 10 mg/kg dose of SB-243213. Overall, our results indicate that antagonism of the 5-HT2C receptor alters the activity of midbrain DA neurons in anesthetized rats and suggest that SB-243213 has an atypical antipsychotic profile following chronic administration.


Subject(s)
Dopamine/metabolism , Indoles/administration & dosage , Neurons/drug effects , Pyridines/administration & dosage , Serotonin 5-HT2 Receptor Antagonists , Substantia Nigra/cytology , Ventral Tegmental Area/cytology , beta-Cyclodextrins , 2-Hydroxypropyl-beta-cyclodextrin , Action Potentials/drug effects , Analysis of Variance , Animals , Apomorphine/pharmacology , Cell Count/methods , Clozapine/pharmacology , Cyclodextrins/pharmacology , Dopamine Agonists/pharmacology , Dopamine Antagonists , Dose-Response Relationship, Drug , Drug Administration Routes , Drug Interactions , Haloperidol/pharmacology , Male , Neurons/classification , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Serotonin Antagonists/pharmacology
15.
Nat Med ; 8(8): 825-30, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12118247

ABSTRACT

Melanin concentrating hormone (MCH) is an orexigenic hypothalamic neuropeptide, which plays an important role in the complex regulation of energy balance and body weight. Here we show that SNAP-7941, a selective, high-affinity MCH1 receptor (MCH1-R) antagonist, inhibited food intake stimulated by central administration of MCH, reduced consumption of palatable food, and, after chronic administration to rats with diet-induced obesity, resulted in a marked, sustained decrease in body weight. In addition, after mapping the binding sites for [(3)H]SNAP-7941 in rat brain, we evaluated its effects in a series of behavioral models. SNAP-7941 produced effects similar to clinically used antidepressants and anxiolytics in three animal models of depression/anxiety: the rat forced-swim test, rat social interaction and guinea pig maternal-separation vocalization tests. Given these observations, an MCH1-R antagonist may be useful not only in the management of obesity but also as a treatment for depression and/or anxiety.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Appetite Depressants/pharmacology , Body Weight/drug effects , Eating/drug effects , Piperidines/pharmacology , Pyrimidines/pharmacology , Receptors, Pituitary Hormone/antagonists & inhibitors , Animals , Behavior, Animal/drug effects , Brain/cytology , Brain/metabolism , Cell Line , Diet , Female , Guinea Pigs , Humans , Hypothalamic Hormones/chemistry , Hypothalamic Hormones/metabolism , Male , Melanins/chemistry , Melanins/metabolism , Molecular Structure , Pituitary Hormones/chemistry , Pituitary Hormones/metabolism , Random Allocation , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Pituitary Hormone/metabolism
16.
Pharmacol Biochem Behav ; 71(4): 555-68, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11888547

ABSTRACT

5-HT research is now more than 50 years old, and it has generated a wealth of therapeutic agents, some of which have had a major impact on disease management. The 5-HT reuptake inhibitors (SSRIs) are among the most widely prescribed drugs for treating depression and a variety of other disorders including anxiety, social phobia and premenstrual dysphoria (PMD). The other major success stories of 5-HT research are the discovery of 5-HT1B/D receptor agonists for treating migraine and 5-HT3 receptor antagonists for chemotherapy and radiation-induced emesis. The role of 5-HT in the mechanism of action of antipsychotic agents remains a topic of intense research, which promises better treatments for schizophrenia in the future. Compounds interacting with 5-HT1F, 5-HT2C, 5-HT6 and 5-HT7 receptors are currently under investigation and may prove to have important therapeutic applications in the future.


Subject(s)
Serotonin Agents/therapeutic use , Serotonin/physiology , Animals , Gastrointestinal Diseases/drug therapy , Humans , Mental Disorders/drug therapy , Mental Disorders/psychology , Psychotropic Drugs/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...