Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biomaterials ; 293: 121982, 2023 02.
Article in English | MEDLINE | ID: mdl-36640555

ABSTRACT

Human pluripotent stem cell-derived hepatocytes (hPSC-Heps) may be suitable for treating liver diseases, but differentiation protocols often fail to yield adult-like cells. We hypothesised that replicating healthy liver niche biochemical and biophysical cues would produce hepatocytes with desired metabolic functionality. Using 2D synthetic hydrogels which independently control mechanical properties and biochemical cues, we found that culturing hPSC-Heps on surfaces matching the stiffness of fibrotic liver tissue upregulated expression of genes for RGD-binding integrins, and increased expression of YAP/TAZ and their transcriptional targets. Alternatively, culture on soft, healthy liver-like substrates drove increases in cytochrome p450 activity and ureagenesis. Knockdown of ITGB1 or reducing RGD-motif-containing peptide concentration in stiff hydrogels reduced YAP activity and improved metabolic functionality; however, on soft substrates, reducing RGD concentration had the opposite effect. Furthermore, targeting YAP activity with verteporfin or forskolin increased cytochrome p450 activity, with forskolin dramatically enhancing urea synthesis. hPSC-Heps could also be successfully encapsulated within RGD peptide-containing hydrogels without negatively impacting hepatic functionality, and compared to 2D cultures, 3D cultured hPSC-Heps secreted significantly less fetal liver-associated alpha-fetoprotein, suggesting furthered differentiation. Our platform overcomes technical hurdles in replicating the liver niche, and allowed us to identify a role for YAP/TAZ-mediated mechanosensing in hPSC-Hep differentiation.


Subject(s)
Hepatocytes , Oligopeptides , Humans , Colforsin/metabolism , Colforsin/pharmacology , Cell Differentiation , Oligopeptides/pharmacology , Oligopeptides/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/pharmacology , Hydrogels/chemistry
2.
JHEP Rep ; 4(4): 100446, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35284810

ABSTRACT

Background & Aims: The truncating mutations in tight junction protein 2 (TJP2) cause progressive cholestasis, liver failure, and hepatocyte carcinogenesis. Due to the lack of effective model systems, there are no targeted medications for the liver pathology with TJP2 deficiency. We leveraged the technologies of patient-specific induced pluripotent stem cells (iPSC) and CRISPR genome-editing, and we aim to establish a disease model which recapitulates phenotypes of patients with TJP2 deficiency. Methods: We differentiated iPSC to hepatocyte-like cells (iHep) on the Transwell membrane in a polarized monolayer. Immunofluorescent staining of polarity markers was detected by a confocal microscope. The epithelial barrier function and bile acid transport of bile canaliculi were quantified between the two chambers of Transwell. The morphology of bile canaliculi was measured in iHep cultured in the Matrigel sandwich system using a fluorescent probe and live-confocal imaging. Results: The iHep differentiated from iPSC with TJP2 mutations exhibited intracellular inclusions of disrupted apical membrane structures, distorted canalicular networks, altered distribution of apical and basolateral markers/transporters. The directional bile acid transport of bile canaliculi was compromised in the mutant hepatocytes, resembling the disease phenotypes observed in the liver of patients. Conclusions: Our iPSC-derived in vitro hepatocyte system revealed canalicular membrane disruption in TJP2 deficient hepatocytes and demonstrated the ability to model cholestatic disease with TJP2 deficiency to serve as a platform for further pathophysiologic study and drug discovery. Lay summary: We investigated a genetic liver disease, progressive familial intrahepatic cholestasis (PFIC), which causes severe liver disease in newborns and infants due to a lack of gene called TJP2. By using cutting-edge stem cell technology and genome editing methods, we established a novel disease modeling system in cell culture experiments. Our experiments demonstrated that the lack of TJP2 induced abnormal cell polarity and disrupted bile acid transport. These findings will lead to the subsequent investigation to further understand disease mechanisms and develop an effective treatment.

3.
Nucleic Acids Res ; 50(6): 3379-3393, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35293570

ABSTRACT

Pre-mRNA processing is an essential mechanism for the generation of mature mRNA and the regulation of gene expression in eukaryotic cells. While defects in pre-mRNA processing have been implicated in a number of diseases their involvement in metabolic pathologies is still unclear. Here, we show that both alternative splicing and alternative polyadenylation, two major steps in pre-mRNA processing, are significantly altered in non-alcoholic fatty liver disease (NAFLD). Moreover, we find that Serine and Arginine Rich Splicing Factor 10 (SRSF10) binding is enriched adjacent to consensus polyadenylation motifs and its expression is significantly decreased in NAFLD, suggesting a role mediating pre-mRNA dysregulation in this condition. Consistently, inactivation of SRSF10 in mouse and human hepatocytes in vitro, and in mouse liver in vivo, was found to dysregulate polyadenylation of key metabolic genes such as peroxisome proliferator-activated receptor alpha (PPARA) and exacerbate diet-induced metabolic dysfunction. Collectively our work implicates dysregulated pre-mRNA polyadenylation in obesity-induced liver disease and uncovers a novel role for SRSF10 in this process.


Subject(s)
Cell Cycle Proteins/metabolism , Non-alcoholic Fatty Liver Disease , Polyadenylation , Repressor Proteins/metabolism , Serine-Arginine Splicing Factors/metabolism , Animals , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing
4.
Front Bioeng Biotechnol ; 9: 816542, 2021.
Article in English | MEDLINE | ID: mdl-35308825

ABSTRACT

Intra-peritoneal placement of alginate encapsulated human induced pluripotent stem cell-derived hepatocytes (hPSC-Heps) represents a potential new bridging therapy for acute liver failure. One of the rate-limiting steps that needs to be overcome to make such a procedure more efficacious and safer is to reduce the accumulation of fibrotic tissue around the encapsulated cells to allow the free passage of relevant molecules in and out for metabolism. Novel chemical compositions of alginate afford the possibility of achieving this aim. We accordingly used sulfated alginate and demonstrated that this material reduced fibrotic overgrowth whilst not impeding the process of encapsulation nor cell function. Cumulatively, this suggests sulfated alginate could be a more suitable material to encapsulate hPSC-hepatocyte prior to human use.

5.
Nat Commun ; 10(1): 3350, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31350390

ABSTRACT

The liver parenchyma is composed of hepatocytes and bile duct epithelial cells (BECs). Controversy exists regarding the cellular origin of human liver parenchymal tissue generation during embryonic development, homeostasis or repair. Here we report the existence of a hepatobiliary hybrid progenitor (HHyP) population in human foetal liver using single-cell RNA sequencing. HHyPs are anatomically restricted to the ductal plate of foetal liver and maintain a transcriptional profile distinct from foetal hepatocytes, mature hepatocytes and mature BECs. In addition, molecular heterogeneity within the EpCAM+ population of freshly isolated foetal and adult human liver identifies diverse gene expression signatures of hepatic and biliary lineage potential. Finally, we FACS isolate foetal HHyPs and confirm their hybrid progenitor phenotype in vivo. Our study suggests that hepatobiliary progenitor cells previously identified in mice also exist in humans, and can be distinguished from other parenchymal populations, including mature BECs, by distinct gene expression profiles.


Subject(s)
Liver/cytology , Transcription, Genetic , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Fetus/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Liver/metabolism , Single-Cell Analysis , Stem Cells/cytology , Stem Cells/metabolism
6.
Stem Cells Transl Med ; 8(2): 124-137, 2019 02.
Article in English | MEDLINE | ID: mdl-30456803

ABSTRACT

Recent advancements in the production of hepatocytes from human pluripotent stem cells (hPSC-Heps) afford tremendous possibilities for treatment of patients with liver disease. Validated current good manufacturing practice (cGMP) lines are an essential prerequisite for such applications but have only recently been established. Whether such cGMP lines are capable of hepatic differentiation is not known. To address this knowledge gap, we examined the proficiency of three recently derived cGMP lines (two hiPSC and one hESC) to differentiate into hepatocytes and their suitability for therapy. hPSC-Heps generated using a chemically defined four-step hepatic differentiation protocol uniformly demonstrated highly reproducible phenotypes and functionality. Seeding into a 3D poly(ethylene glycol)-diacrylate fabricated inverted colloid crystal scaffold converted these immature progenitors into more advanced hepatic tissue structures. Hepatic constructs could also be successfully encapsulated into the immune-privileged material alginate and remained viable as well as functional upon transplantation into immune competent mice. This is the first report we are aware of demonstrating cGMP-compliant hPSCs can generate cells with advanced hepatic function potentially suitable for future therapeutic applications. Stem Cells Translational Medicine 2019;8:124&14.


Subject(s)
Cell- and Tissue-Based Therapy/standards , Hepatocytes/cytology , Pluripotent Stem Cells/cytology , Animals , Cell Culture Techniques/standards , Cell Differentiation/physiology , Cell Line , Humans , Liver/cytology , Mice
7.
Biomaterials ; 182: 299-311, 2018 11.
Article in English | MEDLINE | ID: mdl-30149262

ABSTRACT

Generation of human organoids from induced pluripotent stem cells (iPSCs) offers exciting possibilities for developmental biology, disease modelling and cell therapy. Significant advances towards those goals have been hampered by dependence on animal derived matrices (e.g. Matrigel), immortalized cell lines and resultant structures that are difficult to control or scale. To address these challenges, we aimed to develop a fully defined liver organoid platform using inverted colloid crystal (ICC) whose 3-dimensional mechanical properties could be engineered to recapitulate the extracellular niche sensed by hepatic progenitors during human development. iPSC derived hepatic progenitors (IH) formed organoids most optimally in ICC scaffolds constructed with 140 µm diameter pores coated with type I collagen in a two-step process mimicking liver bud formation. The resultant organoids were closer to adult tissue, compared to 2D and 3D controls, with respect to morphology, gene expression, protein secretion, drug metabolism and viral infection and could integrate, vascularise and function following implantation into livers of immune-deficient mice. Preliminary interrogation of the underpinning mechanisms highlighted the importance of TGFß and hedgehog signalling pathways. The combination of functional relevance with tuneable mechanical properties leads us to propose this bioengineered platform to be ideally suited for a range of future mechanistic and clinical organoid related applications.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Liver/cytology , Organoids/cytology , Polyethylene Glycols/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Cells, Cultured , Crystallization , Humans , Induced Pluripotent Stem Cells/metabolism
8.
Hum Gene Ther ; 29(10): 1124-1139, 2018 10.
Article in English | MEDLINE | ID: mdl-29580100

ABSTRACT

Adeno-associated viral vectors are showing great promise as gene therapy vectors for a wide range of retinal disorders. To date, evaluation of therapeutic approaches has depended almost exclusively on the use of animal models. With recent advances in human stem cell technology, stem cell-derived retina now offers the possibility to assess efficacy in human organoids in vitro. Here we test six adeno-associated virus (AAV) serotypes [AAV2/2, AAV2/9, AAV2/8, AAV2/8T(Y733F), AAV2/5, and ShH10] to determine their efficiency in transducing mouse and human pluripotent stem cell-derived retinal pigment epithelium (RPE) and photoreceptor cells in vitro. All the serotypes tested were capable of transducing RPE and photoreceptor cells in vitro. AAV ShH10 and AAV2/5 are the most efficient vectors at transducing both mouse and human RPE, while AAV2/8 and ShH10 achieved similarly robust transduction of human embryonic stem cell-derived cone photoreceptors. Furthermore, we show that human embryonic stem cell-derived photoreceptors can be used to establish promoter specificity in human cells in vitro. The results of this study will aid capsid selection and vector design for preclinical evaluation of gene therapy approaches, such as gene editing, that require the use of human cells and tissues.


Subject(s)
Dependovirus/physiology , Genetic Vectors/genetics , Photoreceptor Cells/cytology , Photoreceptor Cells/metabolism , Pluripotent Stem Cells/cytology , Retinal Pigment Epithelium/cytology , Viral Tropism , Animals , Cell Differentiation , Cells, Cultured , Dependovirus/classification , Fluorescent Antibody Technique , Gene Expression , Gene Transfer Techniques , Genes, Reporter , Humans , Mice , Organ Specificity/genetics , Promoter Regions, Genetic , Transduction, Genetic , Transgenes
9.
Stem Cell Reports ; 10(2): 406-421, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29307580

ABSTRACT

Human vision relies heavily upon cone photoreceptors, and their loss results in permanent visual impairment. Transplantation of healthy photoreceptors can restore visual function in models of inherited blindness, a process previously understood to arise by donor cell integration within the host retina. However, we and others recently demonstrated that donor rod photoreceptors engage in material transfer with host photoreceptors, leading to the host cells acquiring proteins otherwise expressed only by donor cells. We sought to determine whether stem cell- and donor-derived cones undergo integration and/or material transfer. We find that material transfer accounts for a significant proportion of rescued cells following cone transplantation into non-degenerative hosts. Strikingly, however, substantial numbers of cones integrated into the Nrl-/- and Prph2rd2/rd2, but not Nrl-/-;RPE65R91W/R91W, murine models of retinal degeneration. This confirms the occurrence of photoreceptor integration in certain models of retinal degeneration and demonstrates the importance of the host environment in determining transplantation outcome.


Subject(s)
Blindness/therapy , Retinal Cone Photoreceptor Cells/transplantation , Retinal Degeneration/therapy , Stem Cell Transplantation , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Blindness/genetics , Blindness/pathology , Cell Differentiation/genetics , Disease Models, Animal , Eye Proteins/genetics , Humans , Mice , Peripherins/genetics , Retina/pathology , Retina/transplantation , Retinal Cone Photoreceptor Cells/cytology , Retinal Degeneration/pathology , Stem Cells/cytology , cis-trans-Isomerases/genetics
10.
Stem Cell Reports ; 9(3): 820-837, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28844659

ABSTRACT

Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration.


Subject(s)
Pluripotent Stem Cells/cytology , Retinal Cone Photoreceptor Cells/cytology , Retinal Cone Photoreceptor Cells/transplantation , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/ultrastructure , Humans , Pluripotent Stem Cells/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/therapy , Time Factors
11.
Stem Cell Reports ; 8(6): 1659-1674, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28552606

ABSTRACT

The loss of cone photoreceptors that mediate daylight vision represents a leading cause of blindness, for which cell replacement by transplantation offers a promising treatment strategy. Here, we characterize cone differentiation in retinas derived from mouse embryonic stem cells (mESCs). Similar to in vivo development, a temporal pattern of progenitor marker expression is followed by the differentiation of early thyroid hormone receptor ß2-positive precursors and, subsequently, photoreceptors exhibiting cone-specific phototransduction-related proteins. We establish that stage-specific inhibition of the Notch pathway increases cone cell differentiation, while retinoic acid signaling regulates cone maturation, comparable with their actions in vivo. MESC-derived cones can be isolated in large numbers and transplanted into adult mouse eyes, showing capacity to survive and mature in the subretinal space of Aipl1-/- mice, a model of end-stage retinal degeneration. Together, this work identifies a robust, renewable cell source for cone replacement by purified cell suspension transplantation.


Subject(s)
Mouse Embryonic Stem Cells/transplantation , Retinal Cone Photoreceptor Cells/cytology , Retinal Degeneration/therapy , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Basic-Leucine Zipper Transcription Factors/antagonists & inhibitors , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/drug effects , Disease Models, Animal , Eye Proteins/antagonists & inhibitors , Eye Proteins/genetics , Eye Proteins/metabolism , Hepatocyte Nuclear Factor 6/metabolism , Leukemia Inhibitory Factor/pharmacology , Mice , Mice, Knockout , Mouse Embryonic Stem Cells/cytology , Oligodendrocyte Transcription Factor 2/metabolism , Opsins/metabolism , Orphan Nuclear Receptors/antagonists & inhibitors , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Otx Transcription Factors/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Notch/antagonists & inhibitors , Receptors, Notch/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/pathology , Signal Transduction , Tretinoin/metabolism , Tretinoin/pharmacology
12.
Stem Cells ; 33(8): 2469-82, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25982268

ABSTRACT

Loss of photoreceptors due to retinal degeneration is a major cause of untreatable blindness. Cell replacement therapy, using pluripotent stem cell-derived photoreceptor cells, may be a feasible future treatment. Achieving safe and effective cell replacement is critically dependent on the stringent selection and purification of optimal cells for transplantation. Previously, we demonstrated effective transplantation of post-mitotic photoreceptor precursor cells labelled by fluorescent reporter genes. As genetically labelled cells are not desirable for therapy, here we developed a surface biomarker cell selection strategy for application to complex pluripotent stem cell differentiation cultures. We show that a five cell surface biomarker panel CD73(+)CD24(+)CD133(+)CD47(+)CD15(-) facilitates the isolation of photoreceptor precursors from three-dimensional self-forming retina differentiated from mouse embryonic stem cells. Importantly, stem cell-derived cells isolated using the biomarker panel successfully integrate and mature into new rod photoreceptors in the adult mouse retinae after subretinal transplantation. Conversely, unsorted or negatively selected cells do not give rise to newly integrated rods after transplantation. The biomarker panel also removes detrimental proliferating cells prior to transplantation. Notably, we demonstrate how expression of the biomarker panel is conserved in the human retina and propose that a similar selection strategy will facilitate isolation of human transplantation-competent cells for therapeutic application.


Subject(s)
Antigens, Differentiation/metabolism , Mouse Embryonic Stem Cells/metabolism , Retinal Degeneration/therapy , Retinal Rod Photoreceptor Cells , Stem Cell Transplantation , Animals , Humans , Mice , Retinal Degeneration/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/transplantation
13.
Nat Biotechnol ; 31(8): 741-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23873086

ABSTRACT

Irreversible blindness caused by loss of photoreceptors may be amenable to cell therapy. We previously demonstrated retinal repair and restoration of vision through transplantation of photoreceptor precursors obtained from postnatal retinas into visually impaired adult mice. Considerable progress has been made in differentiating embryonic stem cells (ESCs) in vitro toward photoreceptor lineages. However, the capability of ESC-derived photoreceptors to integrate after transplantation has not been demonstrated unequivocally. Here, to isolate photoreceptor precursors fit for transplantation, we adapted a recently reported three-dimensional (3D) differentiation protocol that generates neuroretina from mouse ESCs. We show that rod precursors derived by this protocol and selected via a GFP reporter under the control of a Rhodopsin promoter integrate within degenerate retinas of adult mice and mature into outer segment-bearing photoreceptors. Notably, ESC-derived precursors at a developmental stage similar to postnatal days 4-8 integrate more efficiently compared with cells at other stages. This study shows conclusively that ESCs can provide a source of photoreceptors for retinal cell transplantation.


Subject(s)
Blindness/therapy , Cell Culture Techniques , Embryonic Stem Cells/transplantation , Retina/cytology , Animals , Blindness/genetics , Blindness/pathology , Cell Differentiation , Cell- and Tissue-Based Therapy , Embryonic Stem Cells/cytology , Green Fluorescent Proteins , Mice , Photoreceptor Cells , Photoreceptor Cells, Vertebrate , Retina/metabolism , Retina/pathology , Rhodopsin/genetics , Rhodopsin/metabolism , Stem Cell Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...