Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Stimul ; 15(5): 1236-1245, 2022.
Article in English | MEDLINE | ID: mdl-36067978

ABSTRACT

BACKGROUND: Transcranial ultrasound stimulation (TUS) holds promise as a novel technology for non-invasive neuromodulation, with greater spatial precision than other available methods and the ability to target deep brain structures. However, its safety and efficacy for behavioural and electrophysiological modulation remains controversial and it is not yet clear whether it can be used to manipulate the neural mechanisms supporting higher cognitive function in humans. Moreover, concerns have been raised about a potential TUS-induced auditory confound. OBJECTIVES: We aimed to investigate whether TUS can be used to modulate higher-order visual function in humans in an anatomically-specific way whilst controlling for auditory confounds. METHODS: We used participant-specific skull maps, functional localisation of brain targets, acoustic modelling and neuronavigation to guide TUS delivery to human visual motion processing cortex (hMT+) whilst participants performed a visual motion detection task. We compared the effects of hMT+ stimulation with sham and control site stimulation and examined EEG data for modulation of task-specific event-related potentials. An auditory mask was applied which prevented participants from distinguishing between stimulation and sham trials. RESULTS: Compared with sham and control site stimulation, TUS to hMT+ improved accuracy and reduced response times of visual motion detection. TUS also led to modulation of the task-specific event-related EEG potential. The amplitude of this modulation correlated with the performance benefit induced by TUS. No pathological changes were observed comparing structural MRI obtained before and after stimulation. CONCLUSIONS: The results demonstrate for the first time the precision, efficacy and safety of TUS for stimulation of higher-order cortex and cognitive function in humans whilst controlling for auditory confounds.


Subject(s)
Ultrasonography, Doppler, Transcranial , Visual Cortex , Humans , Cerebral Cortex , Magnetic Resonance Imaging/methods , Visual Cortex/physiology
2.
Brain Stimul ; 13(6): 1527-1534, 2020.
Article in English | MEDLINE | ID: mdl-32891872

ABSTRACT

BACKGROUND: Transcranial ultrasound stimulation (TUS) is emerging as a potentially powerful, non-invasive technique for focal brain stimulation. Recent animal work suggests, however, that TUS effects may be confounded by indirect stimulation of early auditory pathways. OBJECTIVE: We aimed to investigate in human participants whether TUS elicits audible sounds and if these can be masked by an audio signal. METHODS: In 18 healthy participants, T1-weighted magnetic resonance brain imaging was acquired for 3D ultrasound simulations to determine optimal transducer placements and source amplitudes. Thermal simulations ensured that temperature rises were <0.5 °C at the target and <3 °C in the skull. To test for non-specific auditory activation, TUS (500 kHz, 300 ms burst, modulated at 1 kHz with 50% duty cycle) was applied to primary visual cortex and participants were asked to distinguish stimulation from non-stimulation trials. EEG was recorded throughout the task. Furthermore, ex-vivo skull experiments tested for the presence of skull vibrations during TUS. RESULTS: We found that participants can hear sound during TUS and can distinguish between stimulation and non-stimulation trials. This was corroborated by EEG recordings indicating auditory activation associated with TUS. Delivering an audio waveform to participants through earphones while TUS was applied reduced detection rates to chance level and abolished the TUS-induced auditory EEG signal. Ex vivo skull experiments demonstrated that sound is conducted through the skull at the pulse repetition frequency of the ultrasound. CONCLUSION: Future studies using TUS in humans need to take this auditory confound into account and mask stimulation appropriately.


Subject(s)
Acoustic Stimulation/methods , Hearing/physiology , Imaging, Three-Dimensional/methods , Ultrasonography, Doppler, Transcranial/methods , Visual Cortex/diagnostic imaging , Visual Cortex/physiology , Adult , Electroencephalography/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Random Allocation , Young Adult
3.
Ultrasound Med Biol ; 45(7): 1509-1536, 2019 07.
Article in English | MEDLINE | ID: mdl-31109842

ABSTRACT

Ultrasonic neuromodulation is a rapidly growing field, in which low-intensity ultrasound (US) is delivered to nervous system tissue, resulting in transient modulation of neural activity. This review summarizes the findings in the central and peripheral nervous systems from mechanistic studies in cell culture to cognitive behavioral studies in humans. The mechanisms by which US mechanically interacts with neurons and could affect firing are presented. An in-depth safety assessment of current studies shows that parameters for the human studies fall within the safety envelope for US imaging. Challenges associated with accurately targeting US and monitoring the response are described. In conclusion, the literature supports the use of US as a safe, non-invasive brain stimulation modality with improved spatial localization and depth targeting compared with alternative methods. US neurostimulation has the potential to be used both as a scientific instrument to investigate brain function and as a therapeutic modality to modulate brain activity.


Subject(s)
Brain Diseases/therapy , Neurons/physiology , Ultrasonic Therapy/methods , Brain/physiopathology , Brain Diseases/physiopathology , Humans
4.
J Acoust Soc Am ; 144(5): 2947, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30522294

ABSTRACT

The angular spectrum method (ASM) is an effective tool for propagating wave fields between parallel planes through decomposition of the field into a series of independent plane waves. One source of error is interference from mirror sources introduced through the inherent periodicity of the fast Fourier transform (FFT) used to implement this method numerically. Here, spatial filters attenuate waves propagating at large angles, which are sensitive to mirror sources. Simulations show that this suppresses the ripple artifact whilst preserving the accuracy of the ASM-computed fields. To achieve comparable performance without filtering requires up to a 13.5-fold increase in computation time.

SELECTION OF CITATIONS
SEARCH DETAIL
...