Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 469: 115062, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38768689

ABSTRACT

To conserve sequential behavior in relation to the topographic challenges of space, it is proposed that humans and nonhuman animals can organize behavior using different scaling principles. To deal with increases in linear distance, isochrony suggest that there is a corresponding increase in speed, whereas to deal with changes in curvature, speed is adjusted according to a power function. The present study investigates whether these principles provide a framework for describing the organization of mouse behavior in a variety of standard experimental tasks. The structure of movement was examined in ambulation during open field exploration; manipulation in a string-pulling task, in which a string is advanced hand over hand to retrieve food; and rung-walking, in which the limbs successively step from rung to rung on a horizontal ladder. Both principles were found to be conserved in the organization of mouse behavior across scales of movement. These principles provide novel measures of the temporal and geometric features of movement in the mouse and insights into how the temporal and geometric features of movement are conserved within different species.


Subject(s)
Exploratory Behavior , Animals , Mice , Male , Exploratory Behavior/physiology , Mice, Inbred C57BL , Movement/physiology , Motor Activity/physiology , Locomotion/physiology , Behavior, Animal/physiology , Walking/physiology
2.
Behav Processes ; 201: 104713, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35901935

ABSTRACT

Age-related changes in spatial and temporal processing have been documented across a range of species. Rodent studies typically investigate differences in performance between adult and senescent animals; however, progressive loss of neurons in the hippocampus and cortex has been observed to occur as early as after adolescence. Therefore, the current study evaluated the effects of age in three- and ten-month-old female rats on the organization of movement in open field and food protection behaviors, two tasks that have previously dissociated hippocampal and cortical pathology. Age-related differences were observed in general measures of locomotion, spatial orientation, and attentional processing. The results of the current study are consistent with age-related changes in the processing of spatial information and motivation that occur earlier in life than previously anticipated. These observations establish a foundation for future studies evaluating interventions that influence these age-related differences in performance.


Subject(s)
Orientation, Spatial , Space Perception , Animals , Female , Hippocampus/physiology , Locomotion/physiology , Neurons/physiology , Rats , Space Perception/physiology
3.
Behav Brain Res ; 416: 113577, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34506841

ABSTRACT

Astronauts undertaking deep space travel will receive chronic exposure to the mixed spectrum of particles that comprise Galactic Cosmic Radiation (GCR). Exposure to the different charged particles of varied fluence and energy that characterize GCR may impact neural systems that support performance on mission critical tasks. Indeed, growing evidence derived from years of terrestrial-based simulations of the space radiation environment using rodents has indicated that a variety of exposure scenarios can result in significant and long-lasting decrements to CNS functionality. Many of the behavioral tasks used to quantify radiation effects on the CNS depend on neural systems that support maintaining spatial orientation and organization of rodent open field behavior. The current study examined the effects of acute or chronic exposure to simulated GCR on the organization of open field behavior under conditions with varied access to environmental cues in male and female C57BL/6 J mice. In general, groups exhibited similar organization of open field behavior under dark and light conditions. Two exceptions were noted: the acute exposure group exhibited significantly slower and more circuitous homeward progressions relative to the chronic group under light conditions. These results demonstrate the potential of open field behavior organization to discriminate between the effects of select GCR exposure paradigms.


Subject(s)
Cosmic Radiation/adverse effects , Cues , Exploratory Behavior/physiology , Orientation, Spatial/physiology , Radiation Exposure/adverse effects , Animals , Female , Male , Mice , Mice, Inbred C57BL , Space Flight
4.
Behav Processes ; 162: 29-38, 2019 May.
Article in English | MEDLINE | ID: mdl-30684732

ABSTRACT

Spatial orientation is a ubiquitous feature of animal behavior. Environmental and self-movement cues are sources of information used to maintain spatial orientation. The literature has typically focused on differences between mice and rats using environmental cues to guide movement. The current study uses the organization of exploratory behavior under dark conditions to investigate species differences in self-movement cue processing. Mouse and rat exploratory behavior was recorded under dark conditions on a circular table without walls. The resulting movements were segmented in progressions (movement ≥ 3 cm/s) and stops (movement < 3 cm/s). Mice exhibited longer travel distances, faster progression peak speeds, and weaker tendency to scale progression peak speeds to Euclidean distances relative to rats. In contrast, similar levels of performance were observed on measures (progression path circuity, change in heading, stability of stopping behavior) sensitive to vestibular pathology. These results are consistent with species differences in a variety of performance variables; however, self-movement cue based spatial orientation did not differentiate between mice and rats. This work establishes a translational foundation for future work investigating the neurobiology of self-movement cue processing using species-unique neuroscience techniques.


Subject(s)
Exploratory Behavior , Movement , Orientation, Spatial , Space Perception , Animals , Cues , Darkness , Male , Mice , Rats , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...