Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Environ Toxicol Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961679

ABSTRACT

In a previous in vivo study, adult male fathead minnows (Pimephales promelas) were exposed via water for 4 days to 1H,1H,8H,8H-perfluorooctane-1,8-diol (FC8-diol). The present study expands on the evaluation of molecular responses to this perfluoro-alcohol by analyzing 26 male fathead minnow liver RNA samples from that study (five from each test concentration: 0, 0.018, 0.051, 0.171, and 0.463 mg FC8-diol/L) using fathead minnow EcoToxChips Ver. 1.0. EcoToxChips are a quantitative polymerase chain reaction array that allows for simultaneous measurement of >375 species-specific genes of toxicological interest. Data were analyzed with the online tool EcoToxXplorer. Among the genes analyzed, 62 and 96 were significantly up- and downregulated, respectively, by one or more FC8-diol treatments. Gene expression results from the previous study were validated, showing an upregulation of vitellogenin mRNA (vtg) and downregulation of insulin-like growth factor 1 mRNA (igf1). Additional genes related to estrogen receptor activation including esr2a (estrogen receptor 2a) and esrrb (estrogen related receptor beta) were also affected, providing further confirmation of the estrogenic nature of FC8-diol. Furthermore, genes involved in biological pathways related to lipid and carbohydrate metabolism, innate immune response, endocrine reproduction, and endocrine thyroid were significantly affected. These results both add confidence in the use of the EcoToxChip tool for inferring chemical mode(s) of action and provide further insights into the possible biological effects of FC8-diol. Environ Toxicol Chem 2024;00:1-9. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

2.
Environ Toxicol Chem ; 43(7): 1509-1523, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38860662

ABSTRACT

The potential for polycyclic aromatic hydrocarbon (PAH)-related effects in benthic organisms is commonly estimated from organic carbon-normalized sediment concentrations based on equilibrium partitioning (EqP). Although this approach is useful for screening purposes, it may overestimate PAH bioavailability by orders of magnitude in some sediments, leading to inflated exposure estimates and potentially unnecessary remediation costs. Recently, passive samplers have been shown to provide an accurate assessment of the freely dissolved concentrations of PAHs, and thus their bioavailability and possible biological effects, in sediment porewater and overlying surface water. We used polyethylene passive sampling devices (PEDs) to measure freely dissolved porewater and water column PAH concentrations at 55 Great Lakes (USA/Canada) tributary locations. The potential for PAH-related biological effects using PED concentrations were estimated with multiple approaches by applying EqP, water quality guidelines, and pathway-based biological activity based on in vitro bioassay results from ToxCast. Results based on the PED-based exposure estimates were compared with EqP-derived exposure estimates for concurrently collected sediment samples. The results indicate a potential overestimation of bioavailable PAH concentrations by up to 960-fold using the EqP-based method compared with measurements using PEDs. Even so, PED-based exposure estimates indicate a high potential for PAH-related biological effects at 14 locations. Our findings provide an updated, weight-of-evidence-based site prioritization to help guide possible future monitoring and mitigation efforts. Environ Toxicol Chem 2024;43:1509-1523. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Environmental Monitoring , Geologic Sediments , Lakes , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Environmental Monitoring/methods , Lakes/chemistry , Animals
3.
Arch Environ Contam Toxicol ; 86(4): 346-362, 2024 May.
Article in English | MEDLINE | ID: mdl-38743081

ABSTRACT

It is postulated that below a transcriptomic-based point of departure, adverse effects are unlikely to occur, thereby providing a chemical concentration to use in screening level hazard assessment. The present study extends previous work describing a high-throughput fathead minnow assay that can provide full transcriptomic data after exposure to a test chemical. One-day post-hatch fathead minnows were exposed to ten concentrations of three representatives of four chemical modes of action: organophosphates, ecdysone receptor agonists, plant photosystem II inhibitors, and estrogen receptor agonists for 24 h. Concentration response modeling was performed on whole body gene expression data from each exposure, using measured chemical concentrations when available. Transcriptomic points of departure in larval fathead minnow were lower than apical effect concentrations across fish species but not always lower than toxic effect concentrations in other aquatic taxa like crustaceans and insects. The point of departure was highly dependent on measured chemical concentration which were often lower than the nominal concentration. Differentially expressed genes between chemicals within modes of action were compared and often showed statistically significant overlap. In addition, reproducibility between identical exposures using a positive control chemical (CuSO4) and variability associated with the transcriptomic point of departure using in silico sampling were considered. Results extend a transcriptomic-compatible fathead minnow high-throughput assay for possible use in ecological hazard screening.


Subject(s)
Cyprinidae , Larva , Transcriptome , Water Pollutants, Chemical , Animals , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Larva/drug effects
4.
Nanoscale ; 16(18): 9036-9046, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38630057

ABSTRACT

Filamentous fungi are known to secrete biochemicals that drive the synthesis of nanoparticles (NPs) that vary in composition, size, and shape; a process deemed mycosynthesis. Following the introduction of precursor salts directly to the fungal mycelia or their exudates, mycosynthesis proceeds at ambient temperature and pressure, and near neutral pH, presenting significant energy and cost savings over traditional chemical or physical approaches. The mycosynthesis of zinc oxide (ZnO) NPs by various fungi exhibited a species dependent morphological preference for the resulting NPs, suggesting that key differences in the biochemical makeup of their individual exudates may regulate the controlled nucleation and growth of these different morphologies. Metabolomics and proteomics of the various fungal exudates suggest that metal chelators, such as hexamethylenetetramine, present in high concentrations in exudates of Aspergillus versicolor are critical for the production dense, well-formed, spheroid nanoparticles. The results also corroborate that the proteinaceous material in the production of ZnO NPs serves as a surface modifier, or protein corona, preventing excessive coagulation of the NPs. Collectively, these findings suggest that NP morphology is regulated by the small molecule metabolites, and not proteins, present in fungal exudates, establishing a deeper understanding of the factors and mechanism underlying mycosynthesis of NPs.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Zinc Oxide/chemistry , Metal Nanoparticles/chemistry , Aspergillus/metabolism , Aspergillus/chemistry , Metabolomics , Proteomics , Nanoparticles/chemistry , Fungal Proteins/metabolism , Fungal Proteins/chemistry
5.
Environ Toxicol Chem ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450772

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) represent a large group of contaminants of concern based on their widespread use, environmental persistence, and potential toxicity. Many traditional models for estimating toxicity, bioaccumulation, and other toxicological properties are not well suited for PFAS. Consequently, there is a need to generate hazard information for PFAS in an efficient and cost-effective manner. In the present study, Daphnia magna were exposed to multiple concentrations of 22 different PFAS for 24 h in a 96-well plate format. Following exposure, whole-body RNA was extracted and extracts, each representing five exposed individuals, were subjected to RNA sequencing. Following analytical measurements to verify PFAS exposure concentrations and quality control on processed cDNA libraries for sequencing, concentration-response modeling was applied to the data sets for 18 of the tested compounds, and the concentration at which a concerted molecular response occurred (transcriptomic point of departure; tPOD) was calculated. The tPODs, based on measured concentrations of PFAS, generally ranged from 0.03 to 0.58 µM (9.9-350 µg/L; interquartile range). In most cases, these concentrations were two orders of magnitude lower than similarly calculated tPODs for human cell lines exposed to PFAS. They were also lower than apical effect concentrations reported for seven PFAS for which some crustacean or invertebrate toxicity data were available, although there were a few exceptions. Despite being lower than most other available hazard benchmarks, D. magna tPODs were, on average, four orders of magnitude greater than the maximum aqueous concentrations of PFAS measured in Great Lakes tributaries. Overall, this high-throughput transcriptomics assay with D. magna holds promise as a component of a tiered hazard evaluation strategy employing new approach methodologies. Environ Toxicol Chem 2024;00:1-16. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

6.
J Appl Toxicol ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531109

ABSTRACT

As part of the US Environmental Protection Agency's perfluoroalkyl and polyfluoroalkyl substances (PFAS) Action Plan, the agency is committed to increasing our understanding of the potential ecological effects of PFAS. The objective of these studies was to examine the developmental toxicity of PFAS using the laboratory model amphibian species Xenopus laevis. We had two primary aims: (1) to understand the developmental toxicity of a structurally diverse set of PFAS compounds in developing embryos and (2) to characterize the potential impacts of perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide-dimer acid (HFPO-DA a.k.a. GenX), on growth and thyroid hormone-controlled metamorphosis. We employed a combination of static renewal and flow-through exposure designs. Embryos were exposed to 17 structurally diverse PFAS starting at the midblastula stage through the completion of organogenesis (96 h). To investigate impacts on PFOS, PFOA, PFHxS, and HFPO-DA on development and metamorphosis, larvae were exposed from premetamorphosis (Nieuwkoop Faber stage 51 or 54) through pro metamorphosis. Of the PFAS tested in embryos, only 1H,1H,10H,10H-perfluorodecane-1,10-diol (FC10-diol) and perfluorohexanesulfonamide (FHxSA) exposure resulted in clear concentration-dependent developmental toxicity. For both of these PFAS, a significant increase in mortality was observed at 2.5 and 5 mg/L. For FC10-diol, 100% of the surviving embryos were malformed at 1.25 and 2.5 mg/L, while for FHxSA, a significant increase in malformations (100%) was observed at 2.5 and 5 mg/L. Developmental stage achieved was the most sensitive endpoint with significant effects observed at 1.25 and 0.625 mg/L for FC10-diol and FHxSA, respectively. In larval studies, we observed impacts on growth following exposure to PFHxS and PFOS at concentrations of 100 and 2.5 mg/L, respectively, while no impacts were observed in larvae when exposed to PFOA and HFPO-DA at concentration of 100 mg/L. Further, we did not observe impacts on thyroid endpoints in exposed larvae. These experiments have broadened our understanding of the impact of PFAS on anuran development.

7.
Environ Toxicol Chem ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38415853

ABSTRACT

Traditional toxicity testing has been unable to keep pace with the introduction of new chemicals into commerce. Consequently, there are limited or no toxicity data for many chemicals to which fish and wildlife may be exposed. Per- and polyfluoroalkyl substances (PFAS) are emblematic of this issue in that ecological hazards of most PFAS remain uncharacterized. The present study employed a high-throughput assay to identify the concentration at which 20 PFAS, with diverse properties, elicited a concerted gene expression response (termed a transcriptomics-based point of departure [tPOD]) in larval fathead minnows (Pimephales promelas; 5-6 days postfertilization) exposed for 24 h. Based on a reduced transcriptome approach that measured whole-body expression of 1832 genes, the median tPOD for the 20 PFAS tested was 10 µM. Longer-chain carboxylic acids (12-13 C-F); an eight-C-F dialcohol, N-alkyl sulfonamide; and telomer sulfonic acid were among the most potent PFAS, eliciting gene expression responses at concentrations <1 µM. With a few exceptions, larval fathead minnow tPODs were concordant with those based on whole-transcriptome response in human cell lines. However, larval fathead minnow tPODs were often greater than those for Daphnia magna exposed to the same PFAS. The tPODs overlapped concentrations at which other sublethal effects have been reported in fish (available for 10 PFAS). Nonetheless, fathead minnow tPODs were orders of magnitude higher than aqueous PFAS concentrations detected in tributaries of the North American Great Lakes, suggesting a substantial margin of safety. Overall, results broadly support the use of a fathead minnow larval transcriptomics assay to derive screening-level potency estimates for use in ecological risk-based prioritization. Environ Toxicol Chem 2024;00:1-16. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

8.
Sci Total Environ ; 904: 166231, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37586530

ABSTRACT

Long-term (2010-19) water-quality monitoring on the Colorado River downstream from Moab Utah indicated the persistent presence of Bioactive Chemicals (BC), such as pesticides and pharmaceuticals. This stream reach near Canyonlands National Park provides critical habitat for federally endangered species. The Moab wastewater treatment plant (WWTP) outfall discharges to the Colorado River and is the nearest potential point-source to this reach. The original WWTP was replaced in 2018. In 2016-19, a study was completed to determine if the new plant reduced BC input to the Colorado River at, and downstream from, the outfall. Water samples were collected before and after the plant replacement at sites upstream and downstream from the outfall. Samples were analyzed for as many as 243 pesticides, 109 pharmaceuticals, 20 hormones, 51 wastewater indicator chemicals, 20 metals, and 8 nutrients. BC concentrations, hazard quotients (HQs), and exposure activity ratios (EARs) were used to identify and prioritize contaminants for their potential to have adverse biological effects on the health of native and endangered wildlife. There were 22 BC with HQs >1, mostly metals and hormones; and 23 BC with EARs >0.1, mostly hormones and pharmaceuticals. Most high HQs or EARs were associated with samples collected at the WWTP outfall site prior to its replacement. Discharge from the new plant had reduced concentrations of nutrients, hormones, pharmaceuticals, and other BC. For example, all 16 of the hormones detected at the WWTP outfall site had maximum concentrations in samples collected prior to the WWTP replacement. The WWTP replacement had less effect on instream concentrations of metals and pesticides, BC whose sources are less directly tied to domestic wastewater. Study results indicate that improved WWTP technology can create substantial reductions in concentrations of non-regulated BC such as pharmaceuticals, in addition to regulated contaminants such as nutrients.


Subject(s)
Pesticides , Water Pollutants, Chemical , Water Purification , Wastewater , Colorado , Utah , Environmental Monitoring , Water Pollutants, Chemical/analysis , Water , Pesticides/analysis , Hormones , Pharmaceutical Preparations
9.
Aquat Toxicol ; 261: 106632, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37451188

ABSTRACT

Thyroid hormone system disruption (THSD) negatively affects multiple developmental processes and organs. In fish, inhibition of deiodinases, which are enzymes crucial for (in)activating thyroid hormones (THs), leads to impaired swim bladder inflation. Until now, the underlying mechanism has remained largely unknown. Therefore, the objective of this study was to identify the process during swim bladder development that is impacted by deiodinase inhibition. Zebrafish embryos were exposed to 6 mg/L iopanoic acid (IOP), a model deiodinase inhibitor, during 8 different exposure windows (0-60, 60-120, 24-48, 48-72, 72-96, 96-120, 72-120 and 0-120 h post fertilization (hpf)). Exposure windows were chosen based on the three stages of swim bladder development: budding (24-48 hpf), pre-inflation, i.e., the formation of the swim bladder tissue layers (48-72 hpf), and inflation phase (72-120 hpf). Exposures prior to 72 hpf, during either the budding or pre-inflation phase (or both), impaired swim bladder inflation, while exposure during the inflation phase did not. Based on our results, we hypothesize that DIO inhibition before 72 hpf leads to a local decrease in T3 levels in the developing swim bladder. Gene transcript analysis showed that these TH level alterations disturb both Wnt and hedgehog signaling, known to be essential for swim bladder formation, eventually resulting in impaired development of the swim bladder tissue layers. Improper development of the swim bladder impairs swim bladder inflation, leading to reduced swimming performance. This study demonstrates that deiodinase inhibition impacts processes underlying the formation of the swim bladder and not the inflation process, suggesting that these processes primarily rely on maternal rather than endogenously synthetized THs since TH measurements showed that THs were not endogenously synthetized during the sensitive period.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/physiology , Iodide Peroxidase/genetics , Urinary Bladder , Hedgehog Proteins/genetics , Water Pollutants, Chemical/toxicity , Thyroid Hormones , Embryonic Development , Embryo, Nonmammalian/physiology
10.
Environ Sci Technol ; 57(9): 3794-3803, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36800546

ABSTRACT

Given concerns about potential toxicological hazards of the thousands of data-poor per- and polyfluorinated alkyl substances (PFAS) currently in commerce and detected in the environment, tiered testing strategies that employ high-throughput in vitro screening as an initial testing tier have been implemented. The present study evaluated the effectiveness of previous in vitro screening for identifying PFAS capable, or incapable, of inducing estrogenic responses in fish exposed in vivo. Fathead minnows (Pimephales promelas) were exposed for 96 h to five PFAS (perfluorooctanoic acid [PFOA]; 1H,1H,8H,8H-perfluorooctane-1,8-diol [FC8-diol]; 1H,1H,10H,10H-perfluorodecane-1,10-diol [FC10-diol]; 1H,1H,8H,8H-perfluoro-3,6-dioxaoctane-1,8-diol [FC8-DOD]; and perfluoro-2-methyl-3-oxahexanoic acid [HFPO-DA]) that showed varying levels of in vitro estrogenic potency. In agreement with in vitro screening results, exposure to FC8-diol, FC10-diol, and FC8-DOD caused concentration-dependent increases in the expression of transcript coding for vitellogenin and estrogen receptor alpha and reduced expression of insulin-like growth factor and apolipoprotein eb. Once differences in bioconcentration were accounted for, the rank order of potency in vivo matched that determined in vitro. These results provide a screening level benchmark for worst-case estimates of potential estrogenic hazards of PFAS and a basis for identifying structurally similar PFAS to scrutinize for putative estrogenic activity.


Subject(s)
Alkanesulfonic Acids , Cyprinidae , Fluorocarbons , Animals , Estrogens/metabolism , Estrone/metabolism , Alkanesulfonic Acids/metabolism
11.
Environ Toxicol Chem ; 42(6): 1229-1256, 2023 06.
Article in English | MEDLINE | ID: mdl-36715369

ABSTRACT

Anthropogenic activities introduce complex mixtures into aquatic environments, necessitating mixture toxicity evaluation during risk assessment. There are many alternative approaches that can be used to complement traditional techniques for mixture assessment. Our study aimed to demonstrate how these approaches could be employed for mixture evaluation in a target watershed. Evaluations were carried out over 2 years (2017-2018) across 8-11 study sites in the Milwaukee Estuary (WI, USA). Whole mixtures were evaluated on a site-specific basis by deploying caged fathead minnows (Pimephales promelas) alongside composite samplers for 96 h and characterizing chemical composition, in vitro bioactivity of collected water samples, and in vivo effects in whole organisms. Chemicals were grouped based on structure/mode of action, bioactivity, and pharmacological activity. Priority chemicals and mixtures were identified based on their relative contributions to estimated mixture pressure (based on cumulative toxic units) and via predictive assessments (random forest regression). Whole mixture assessments identified target sites for further evaluation including two sites targeted for industrial/urban chemical mixture effects assessment; three target sites for pharmaceutical mixture effects assessment; three target sites for further mixture characterization; and three low-priority sites. Analyses identified 14 mixtures and 16 chemicals that significantly contributed to cumulative effects, representing high or medium priority targets for further ecotoxicological evaluation, monitoring, or regulatory assessment. Overall, our study represents an important complement to single-chemical prioritizations, providing a comprehensive evaluation of the cumulative effects of mixtures detected in a target watershed. Furthermore, it demonstrates how different tools and techniques can be used to identify diverse facets of mixture risk and highlights strategies that can be considered in future complex mixture assessments. Environ Toxicol Chem 2023;42:1229-1256. © 2023 SETAC.


Subject(s)
Cyprinidae , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Estuaries , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Ecotoxicology
12.
Integr Environ Assess Manag ; 19(1): 224-238, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35393744

ABSTRACT

The USEPA's 1985 guidelines for the derivation of aquatic life criteria (ALC) are robust but data-intensive. For many chemicals, the extensive in vivo data sets required for ALC derivation are not available. Thus, alternative analyses and processes that can provide provisional values to guide states, tribes, and other stakeholders while data accumulate and more rigorous criteria are derived would be beneficial. The overarching purpose of this study was to assess the feasibility of using data from new approach methodologies (NAMs) like ToxCast to derive first-pass, provisional values to guide chemical prioritization and resource management as a complement to traditional ALC derivation. To address this goal, the study objectives were to (1) estimate chemical potency using data from NAMs for nine compounds with available aquatic benchmarks, (2) evaluate the utility of using NAM data to elucidate potential mechanisms of toxicity to guide problem formulation, and (3) determine the species relevance of toxicity pathways for compounds with clearly defined mechanisms of action as a means to evaluate whether minimum data requirements could potentially be waived when deriving a more formal ALC. Points of departure were derived from ToxCast data based on the fifth percentile of the distribution of activity concentration above cutoff values falling below the cytotoxic burst. Mechanistic inferences were made based on active target hits in ToxCast and, where applicable, assessed for taxonomic conservation using SeqAPASS. ToxCast-based point-of-departure aligned relatively closely (six of nine test chemicals within a factor of 10; eight of nine within a factor of 100) with aquatic benchmarks from the USEPA and US Department of Energy (DOE). Moreover, pathways of toxicity gleaned from NAM data were reflective of in vivo-based findings from the literature. These results, while preliminary, and based on a limited number of substances, support the potential application of NAM data to complement traditional ALC derivation approaches and prioritization. Integr Environ Assess Manag 2023;19:224-238. © 2022 Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Ecotoxicology , Humans
13.
Environ Toxicol Chem ; 42(2): 367-384, 2023 02.
Article in English | MEDLINE | ID: mdl-36562491

ABSTRACT

Watersheds of the Great Lakes Basin (USA/Canada) are highly modified and impacted by human activities including pesticide use. Despite labeling restrictions intended to minimize risks to nontarget organisms, concerns remain that environmental exposures to pesticides may be occurring at levels negatively impacting nontarget organisms. We used a combination of organismal-level toxicity estimates (in vivo aquatic life benchmarks) and data from high-throughput screening (HTS) assays (in vitro benchmarks) to prioritize pesticides and sites of concern in streams at 16 tributaries to the Great Lakes Basin. In vivo or in vitro benchmark values were exceeded at 15 sites, 10 of which had exceedances throughout the year. Pesticides had the greatest potential biological impact at the site with the greatest proportion of agricultural land use in its basin (the Maumee River, Toledo, OH, USA), with 72 parent compounds or transformation products being detected, 47 of which exceeded at least one benchmark value. Our risk-based screening approach identified multiple pesticide parent compounds of concern in tributaries of the Great Lakes; these compounds included: eight herbicides (metolachlor, acetochlor, 2,4-dichlorophenoxyacetic acid, diuron, atrazine, alachlor, triclopyr, and simazine), three fungicides (chlorothalonil, propiconazole, and carbendazim), and four insecticides (diazinon, fipronil, imidacloprid, and clothianidin). We present methods for reducing the volume and complexity of potential biological effects data that result from combining contaminant surveillance with HTS (in vitro) and traditional (in vivo) toxicity estimates. Environ Toxicol Chem 2023;42:367-384. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Herbicides , Insecticides , Pesticides , Water Pollutants, Chemical , Humans , Pesticides/toxicity , Pesticides/analysis , Lakes/chemistry , Environmental Monitoring , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Rivers/chemistry
14.
Integr Environ Assess Manag ; 19(5): 1276-1296, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36524447

ABSTRACT

Watersheds are subjected to diverse anthropogenic inputs, exposing aquatic biota to a wide range of chemicals. Detection of multiple, different chemicals can challenge natural resource managers who often have to determine where to allocate potentially limited resources. Here, we describe a weight-of-evidence framework for retrospectively prioritizing aquatic contaminants. To demonstrate framework utility, we used data from 96-h caged fish studies to prioritize chemicals detected in the Milwaukee Estuary (WI, USA; 2017-2018). Across study years, 77/178 targeted chemicals were detected. Chemicals were assigned prioritization scores based on spatial and temporal detection frequency, environmental distribution, environmental fate, ecotoxicological potential, and effect prediction. Chemicals were sorted into priority bins based on the intersection of prioritization score and data availability. Data-limited chemicals represented those that did not have sufficient data to adequately evaluate ecotoxicological potential or environmental fate. Seven compounds (fluoranthene, benzo[a]pyrene, pyrene, atrazine, metolachlor, phenanthrene, and DEET) were identified as high or medium priority and data sufficient and flagged as candidates for further effects-based monitoring studies. Twenty-one compounds were identified as high or medium priority and data limited and flagged as candidates for further ecotoxicological research. Fifteen chemicals were flagged as the lowest priority in the watershed. One of these chemicals (2-methylnaphthalene) displayed no data limitations and was flagged as a definitively low-priority chemical. The remaining chemicals displayed some data limitations and were considered lower-priority compounds (contingent on further ecotoxicological and environmental fate assessments). The remaining 34 compounds were flagged as low or medium priority. Altogether, this prioritization provided a screening-level (non-definitive) assessment that could be used to focus further resource management and risk assessment activities in the Milwaukee Estuary. Furthermore, by providing detailed methodology and a practical example with real experimental data, we demonstrated that the proposed framework represents a transparent and adaptable approach for prioritizing contaminants in freshwater environments. Integr Environ Assess Manag 2023;19:1276-1296. © 2022 SETAC.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Retrospective Studies , Estuaries , Ecotoxicology , Risk Assessment/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
15.
Environ Toxicol Chem ; 42(1): 100-116, 2023 01.
Article in English | MEDLINE | ID: mdl-36282016

ABSTRACT

To reduce the use of intact animals for chemical safety testing, while ensuring protection of ecosystems and human health, there is a demand for new approach methodologies (NAMs) that provide relevant scientific information at a quality equivalent to or better than traditional approaches. The present case study examined whether bioactivity and associated potency measured in an in vitro screening assay for aromatase inhibition could be used together with an adverse outcome pathway (AOP) and mechanistically based computational models to predict previously uncharacterized in vivo effects. Model simulations were used to inform designs of 60-h and 10-21-day in vivo exposures of adult fathead minnows (Pimephales promelas) to three or four test concentrations of the in vitro aromatase inhibitor imazalil ranging from 0.12 to 260 µg/L water. Consistent with an AOP linking aromatase inhibition to reproductive impairment in fish, exposure to the fungicide resulted in significant reductions in ex vivo production of 17ß-estradiol (E2) by ovary tissue (≥165 µg imazalil/L), plasma E2 concentrations (≥74 µg imazalil/L), vitellogenin (Vtg) messenger RNA expression (≥165 µg imazalil/L), Vtg plasma concentrations (≥74 µg imazalil/L), uptake of Vtg into oocytes (≥260 µg imazalil/L), and overall reproductive output in terms of cumulative fecundity, number of spawning events, and eggs per spawning event (≥24 µg imazalil/L). Despite many potential sources of uncertainty in potency and efficacy estimates based on model simulations, observed magnitudes of apical effects were quite consistent with model predictions, and in vivo potency was within an order of magnitude of that predicted based on in vitro relative potency. Overall, our study suggests that NAMs and AOP-based approaches can support meaningful reduction and refinement of animal testing. Environ Toxicol Chem 2023;42:100-116. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Cyprinidae , Ovary , Humans , Animals , Female , Aromatase/genetics , Aromatase/metabolism , Fadrozole/toxicity , Ecotoxicology , Ecosystem , Estradiol/metabolism , Cyprinidae/physiology , Vitellogenins/metabolism
16.
Environ Toxicol Chem ; 42(2): 340-366, 2023 02.
Article in English | MEDLINE | ID: mdl-36165576

ABSTRACT

To help meet the objectives of the Great Lakes Restoration Initiative with regard to increasing knowledge about toxic substances, 223 pesticides and pesticide transformation products were monitored in 15 Great Lakes tributaries using polar organic chemical integrative samplers. A screening-level assessment of their potential for biological effects was conducted by computing toxicity quotients (TQs) for chemicals with available US Environmental Protection Agency (USEPA) Aquatic Life Benchmark values. In addition, exposure activity ratios (EAR) were calculated using information from the USEPA ToxCast database. Between 16 and 81 chemicals were detected per site, with 97 unique compounds detected overall, for which 64 could be assessed using TQs or EARs. Ten chemicals exceeded TQ or EAR levels of concern at two or more sites. Chemicals exceeding thresholds included seven herbicides (2,4-dichlorophenoxyacetic acid, diuron, metolachlor, acetochlor, atrazine, simazine, and sulfentrazone), a transformation product (deisopropylatrazine), and two insecticides (fipronil and imidacloprid). Watersheds draining agricultural and urban areas had more detections and higher concentrations of pesticides compared with other land uses. Chemical mixtures analysis for ToxCast assays associated with common modes of action defined by gene targets and adverse outcome pathways (AOP) indicated potential activity on biological pathways related to a range of cellular processes, including xenobiotic metabolism, extracellular signaling, endocrine function, and protection against oxidative stress. Use of gene ontology databases and the AOP knowledgebase within the R-package ToxMixtures highlighted the utility of ToxCast data for identifying and evaluating potential biological effects and adverse outcomes of chemicals and mixtures. Results have provided a list of high-priority chemicals for future monitoring and potential biological effects warranting further evaluation in laboratory and field environments. Environ Toxicol Chem 2023;42:340-366. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Herbicides , Pesticides , Water Pollutants, Chemical , Pesticides/toxicity , Pesticides/analysis , Environmental Monitoring/methods , Lakes/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Herbicides/analysis
17.
Environ Toxicol Chem ; 41(11): 2708-2720, 2022 11.
Article in English | MEDLINE | ID: mdl-35920346

ABSTRACT

Metformin, along with its biotransformation product guanylurea, is commonly observed in municipal wastewaters and subsequent surface waters. Previous studies in fish have identified metformin as a potential endocrine-active compound, but there are inconsistencies with regard to its effects. To further investigate the potential reproductive toxicity of metformin and guanylurea to fish, a series of experiments was performed with adult fathead minnows (Pimephales promelas). First, explants of fathead minnow ovary tissue were exposed to 0.001-100 µM metformin or guanylurea to investigate whether the compounds could directly perturb steroidogenesis. Second, spawning pairs of fathead minnows were exposed to metformin (0.41, 4.1, and 41 µg/L) or guanylurea (1.0, 10, and 100 µg/L) for 23 days to assess impacts on reproduction. Lastly, male fathead minnows were exposed to 41 µg/L metformin, 100 µg/L guanylurea, or a mixture of both compounds, with samples collected over a 96-h time course to investigate potential impacts to the hepatic transcriptome or metabolome. Neither metformin nor guanylurea affected steroid production by ovary tissue exposed ex vivo. In the 23 days of exposure, neither compound significantly impacted transcription of endocrine-related genes in male liver or gonad, circulating steroid concentrations in either sex, or fecundity of spawning pairs. In the 96-h time course, 100 µg guanylurea/L elicited more differentially expressed genes than 41 µg metformin/L and showed the greatest impacts at 96 h. Hepatic transcriptome and metabolome changes were chemical- and time-dependent, with the largest impact on the metabolome observed at 23 days of exposure to 100 µg guanylurea/L. Overall, metformin and guanylurea did not elicit effects consistent with reproductive toxicity in adult fathead minnows at environmentally relevant concentrations. Environ Toxicol Chem 2022;41:2708-2720. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Cyprinidae , Metformin , Water Pollutants, Chemical , Animals , Female , Male , Metformin/toxicity , Wastewater , Water Pollutants, Chemical/analysis , Reproduction
18.
Sci Data ; 9(1): 476, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927429

ABSTRACT

Contaminants of Emerging Concern (CECs) can be measured in waters across the United States, including the tributaries of the Great Lakes. The extent to which these contaminants affect gene expression in aquatic wildlife is unclear. This dataset presents the full hepatic transcriptomes of laboratory-reared fathead minnows (Pimephales promelas) caged at multiple sites within the Milwaukee Estuary Area of Concern and control sites. Following 4 days of in situ exposure, liver tissue was removed from males at each site for RNA extraction and sequencing, yielding a total of 116 samples from which libraries were prepared, pooled, and sequenced. For each exposure site, 179 chemical analytes were also assessed. These data were created with the intention of inviting research on possible transcriptomic changes observed in aquatic species exposed to CECs. Access to both full sequencing reads of animal samples as well as water contaminant data across multiple Great Lakes sites will allow others to explore the health of these ecosystems in support of the aims of the Great Lakes Restoration Initiative.


Subject(s)
Cyprinidae , Transcriptome , Animals , Cyprinidae/genetics , Ecosystem , Estuaries , Male , Water Pollutants, Chemical
19.
Environ Toxicol Chem ; 41(9): 2221-2239, 2022 09.
Article in English | MEDLINE | ID: mdl-35852176

ABSTRACT

In a study of 44 diverse sampling sites across 16 Great Lakes tributaries, 110 pharmaceuticals were detected of 257 monitored. The present study evaluated the ecological relevance of detected chemicals and identified heavily impacted areas to help inform resource managers and guide future investigations. Ten pharmaceuticals (caffeine, nicotine, albuterol, sulfamethoxazole, venlafaxine, acetaminophen, carbamazepine, gemfibrozil, metoprolol, and thiabendazole) were distinguished as having the greatest potential for biological effects based on comparison to screening-level benchmarks derived using information from two biological effects databases, the ECOTOX Knowledgebase and the ToxCast database. Available evidence did not suggest substantial concern for 75% of the monitored pharmaceuticals, including 147 undetected pharmaceuticals and 49 pharmaceuticals with screening-level alternative benchmarks. However, because of a lack of biological effects information, screening values were not available for 51 detected pharmaceuticals. Samples containing the greatest pharmaceutical concentrations and having the highest detection frequencies were from Lake Erie, southern Lake Michigan, and Lake Huron tributaries. Samples collected during low-flow periods had higher pharmaceutical concentrations than those collected during increased-flow periods. The wastewater-treatment plant effluent content in streams correlated positively with pharmaceutical concentrations. However, deviation from this correlation demonstrated that secondary factors, such as multiple pharmaceutical sources, were likely present at some sites. Further research could investigate high-priority pharmaceuticals as well as those for which alternative benchmarks could not be developed. Environ Toxicol Chem 2022;41:2221-2239. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Lakes , Water Pollutants, Chemical , Environmental Monitoring/methods , Lakes/chemistry , Pharmaceutical Preparations , Rivers/chemistry , Water Pollutants, Chemical/analysis
20.
Environ Toxicol Chem ; 41(6): 1416-1428, 2022 06.
Article in English | MEDLINE | ID: mdl-35199887

ABSTRACT

Testicular oocytes in wild adult bass (Micropterus spp.) are considered a potential indication of exposure to estrogenic compounds in municipal, agricultural, or industrial wastewater. However, our ability to interpret links between testicular oocyte occurrence in wild fish species and environmental pollutants is limited by our understanding of normal and abnormal gonadal development. We previously reported low-to-moderate testicular oocyte prevalence (7%-38%) among adult male bass collected from Minnesota waters with no known sources of estrogenic compounds. In the present study, two experiments were conducted in which smallmouth bass (Micropterus dolomieu) fry were exposed to control water or 17-α-ethinylestradiol (EE2) during gonadal differentiation, then reared in clean water for an additional period. Histological samples were evaluated at several time points during the exposure and grow-out periods, and the sequence and timing of gonadal development in the presence of estrogen were compared with that of control fish. Testicular oocytes were not observed in any control or EE2-exposed fish. Among groups exposed to 1.2 or 5.1 ng/L EE2 in Experiment 1 or 3.0 ng/L EE2 in Experiment 2, ovaries were observed in 100% of fish up to 90 days after exposure ceased, and approximately half of those ovaries had abnormal characteristics, suggesting that they likely developed in sex-reversed males. Groups exposed to 0.1, 0.4, or 1.0 ng/L in Experiment 2 developed histologically normal ovaries and testes in proportions not significantly different from 1:1. These findings suggest that, while presumably able to cause sex reversal, juvenile exposure to EE2 may not be a unique cause of testicular oocytes in wild bass, although the long-term outcomes of exposure are unknown. Environ Toxicol Chem 2022;41:1416-1428. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Bass , Disorders of Sex Development , Water Pollutants, Chemical , Animals , Disorders of Sex Development/pathology , Estrogens/toxicity , Ethinyl Estradiol/toxicity , Male , Rivers , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...