Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Comput ; 26(3): 441-469, 2018.
Article in English | MEDLINE | ID: mdl-29786460

ABSTRACT

Conventional genetic programming (GP) can guarantee only that synthesized programs pass tests given by the provided input-output examples. The alternative to such a test-based approach is synthesizing programs by formal specification, typically realized with exact, nonheuristic algorithms. In this article, we build on our earlier study on Counterexample-Based Genetic Programming (CDGP), an evolutionary heuristic that synthesizes programs from formal specifications. The candidate programs in CDGP undergo formal verification with a Satisfiability Modulo Theory (SMT) solver, which results in counterexamples that are subsequently turned into tests and used to calculate fitness. The original CDGP is extended here with a fitness threshold parameter that decides which programs should be verified, a more rigorous mechanism for turning counterexamples into tests, and other conceptual and technical improvements. We apply it to 24 benchmarks representing two domains: the linear integer arithmetic (LIA) and the string manipulation (SLIA) problems, showing that CDGP can reliably synthesize provably correct programs in both domains. We also confront it with two state-of-the art exact program synthesis methods and demonstrate that CDGP effectively trades longer synthesis time for smaller program size.


Subject(s)
Algorithms , Computer Simulation , Data Interpretation, Statistical , Heuristics , Models, Genetic , Humans , Pattern Recognition, Automated
SELECTION OF CITATIONS
SEARCH DETAIL
...