Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5552-5555, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947113

ABSTRACT

Generic dry-contact ear-EEG allows for discreet, user-friendly, unobtrusive, cost-effective and convenient recordings of EEG in real-life settings. In this study we introduce a new generic earpiece design with larger internal ear electrode distances, resulting in an increased spatial coverage compared to previous generic earpiece designs. The signal quality of ear-Fpz, within-ear (the measuring and reference electrode located in the same ear) and cross-ear (the measuring electrodes located in one ear and the reference electrode in the opposite ear) electrode configurations of the developed generic earpiece was evaluated with auditory steady-state responses (ASSR) and compared to dry-contact cEEGrid. Ten subjects with different ear sizes were included. The recordings were performed in a sleep setup, where the subjects were lying on a bed and the effect of sleeping position (back vs. sides) was investigated. We found that the generic earpiece attained statistically significant ASSRs with ear-Fpz, within-ear and cross-ear electrode configurations. However, the dry-contact cEEGrid achieved significantly higher average ASSR signal-to-noise ratio (SNR) compared to the generic earpiece. Additionally, this study showed no significant difference between back and side positions for the ear-EEG.


Subject(s)
Ear, Inner , Electroencephalography , Electrodes , Electroencephalography/instrumentation , Humans , Signal-To-Noise Ratio , Sleep
2.
Anal Chem ; 84(21): 8941-5, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23035870

ABSTRACT

A photoacoustic spectrometer for the measurement of aerosol absorption spectra, based on the excitation of a pulsed nanosecond optical parametrical oscillator (OPO), will be introduced. This spectrometer is working at ambient pressure and can be used to detect and characterize different classes of aerosols. The spectrometer features a spectral range of 410 to 2500 nm and a sensitivity of 2.5 × 10(-7) m(-1) at 550 nm. A full characterization of the system in the visible spectral range is demonstrated, and the potential of the system for near IR measurement is discussed. In the example of different kinds of soot particles, the performance of the spectrometer was assessed. As we demonstrate, it is possible to determine a specific optical absorption per particle by a combination of the new spectrometer with an aerosol particle counter.

SELECTION OF CITATIONS
SEARCH DETAIL
...