Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 15: 26-36, 2024.
Article in English | MEDLINE | ID: mdl-38213571

ABSTRACT

We consider properties of dichroic antenna arrays on a silicon substrate with integrated cold-electron bolometers to detect radiation at frequencies of 210 and 240 GHz. This frequency range is widely used in cosmic microwave background experiments in space, balloon, and ground-based missions such as BICEP Array, LSPE, LiteBIRD, QUBIC, Simons Observatory, and AliCPT. As a direct radiation detector, we use cold-electron bolometers, which have high sensitivity and a wide operating frequency range, as well as immunity to spurious cosmic rays. Their other advantages are the compact size of the order of a few micrometers and the effect of direct electron cooling, which can improve sensitivity in typical closed-loop cycle 3He cryostats for space applications. We study a novel concept of cold-electron bolometers with two SIN tunnel junctions and one SN contact. The amplitude-frequency characteristics measured with YBCO Josephson Junction oscillators show narrow peaks at 205 GHz for the 210 GHz array and at 225 GHz for the 240 GHz array; the separation of these two frequency bands is clearly visible. The noise equivalent power level at an operating point in the current bias mode is 5 × 10-16 W/√Hz.

2.
Materials (Basel) ; 17(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38204075

ABSTRACT

Hafnium is a superconductor with a transition temperature slightly above 100 mK. This makes it attractive for such applications as microcalorimeters with high energy resolution. We report the superconducting properties of Hf films of thicknesses ranging from 60 to 115 nm, deposited on Si and Al2O3 substrates by electron beam evaporation. Besides that, we fabricated and measured combinations of hafnium with thin layers of normal metals, decreasing the critical temperature by the proximity effect. The critical temperature of the studied films varied from 56 to 302 mK. We have observed a significant change in the critical temperature of some films over time, which we propose to prevent by covering hafnium films with a thin layer of titanium.

3.
Beilstein J Nanotechnol ; 13: 865-872, 2022.
Article in English | MEDLINE | ID: mdl-36105685

ABSTRACT

Here we present the results of a numerical modeling of mode composition in the constriction of the Large Scale Polarization Explorer-Short-Wavelength Instrument for the Polarization Explorer (LSPE-SWIPE) back-to-back horn. These results are used for calculating the frequency response of arrays of planar dipole antennas with cold-electron bolometers for 145, 210, and 240 GHz frequencies. For the main frequency channel (i.e., 145 GHz) we have a 45 GHz bandwidth. For the auxiliary frequency channels (i.e., 210 and 240 GHz) placed on the same substrate, we have bandwidths of 26 and 38 GHz, respectively. We performed some optimizations for cold-electron bolometers to achieve a photon noise-equivalent power of 1.1 × 10-16 W/Hz1/2. This was achieved by replacing one of two superconductor-insulator-normal tunnel junctions with a superconductor-normal metal contact.

4.
Beilstein J Nanotechnol ; 13: 896-901, 2022.
Article in English | MEDLINE | ID: mdl-36127899

ABSTRACT

Electron on-chip cooling from the base temperature of 300 mK is very important for highly sensitive detectors operating in space due to problems of dilution fridges at low gravity. Electron cooling is also important for ground-based telescopes equipped with 3He cryostats being able to function at any operating angle. This work is aimed at the investigation of electron cooling in the low-temperature range. New samples of cold-electron bolometers with traps and hybrid superconducting/ferromagnetic absorbers have shown a temperature reduction of the electrons in the refrigerator junctions from 300 to 82 mK, from 200 to 33 mK, and from 100 to 25 mK in the idle regime without optical power load. The electron temperature was determined by solving heat balance equations with account of the leakage current, sixth power of temperature in the whole temperature range, and the Andreev current using numerical methods and an automatic fit algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...