Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Neurobiol Learn Mem ; 210: 107905, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403010

ABSTRACT

Numerous studies have shown robust evidence of the right hemisphere's involvement in the language function, for instance in the processing of intonation, grammar, word meanings, metaphors, etc. However, its role in lexicon acquisition remains obscure. We applied transcranial direct current stimulation (tDCS) over the right-hemispheric homologue of Wernicke's area to assess its putative involvement in the processing of different types of novel semantics. After receiving 15 min of anodal, cathodal, or sham (placebo) tDCS, three groups of healthy participants learnt novel concrete and abstract words in the context of short stories. Learning outcomes were assessed using a battery of tests immediately after this contextual learning session and 24 h later. As a result, an inhibitory effect of cathodal tDCS and a facilitatory effect of anodal tDCS were found for abstract word acquisition only. We also found a significant drop in task performance on the second day of the assessment for both word types in all the stimulation groups, suggesting no significant influence of tDCS on the post-learning consolidation of new memory traces. The results suggest an involvement of Wernicke's right-hemispheric counterpart in initial encoding (but not consolidation) of abstract semantics, which may be explained either by the right hemispheres direct role in processing lexical semantics or by an indirect impact of tDCS on contralateral (left-hemispheric) cortical areas through cross-callosal connections.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Wernicke Area/physiology , Language , Learning , Semantics
2.
Neuropsychologia ; 195: 108800, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38246413

ABSTRACT

The neural underpinnings of processing concrete and abstract semantics remain poorly understood. Previous fMRI studies have shown that multimodal and amodal neural networks respond differentially to different semantic types; importantly, abstract semantics activates more left-lateralized networks, as opposed to more bilateral activity for concrete words. Due to the lack of temporal resolution, these fMRI results do not allow to easily separate language- and task-specific brain responses and to disentangle early processing stages from later post-comprehension phenomena. To tackle this, we used magnetoencephalography (MEG), a time-resolved neuroimaging technique, in combination with a task-free oddball mismatch negativity (MMN) paradigm, an established approach to tracking early automatic activation of word-specific memory traces in the brain. We recorded the magnetic MMN responses in 30 healthy adults to auditorily presented abstract and concrete action verbs to assess lateralization of word-specific lexico-semantic processing in a set of neocortical areas. We found that MMN responses to these stimuli showed different lateralization patterns of activity in the upper limb motor area (BA4) and parts of Broca's area (BA45/BA47) within ∼100-350 ms after the word disambiguation point. Importantly, the greater leftward response lateralization for abstract semantics was due to the lesser involvement of the right-hemispheric homologues, not increased left-hemispheric activity. These findings suggest differential region-specific involvement of bilateral sensorimotor systems already in the early automatic stages of processing abstract and concrete action semantics.


Subject(s)
Brain , Semantics , Adult , Humans , Brain/diagnostic imaging , Brain/physiology , Language , Magnetoencephalography , Magnetic Resonance Imaging/methods , Magnetic Phenomena , Brain Mapping
3.
Life (Basel) ; 13(12)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38137954

ABSTRACT

Transspinal direct current stimulation (tsDCS) is a non-invasive technique used to modulate spinal cord activity. However, the effects and mechanisms of this stimulation are currently not comprehensively known. This study aimed to estimate the effect of different intensities of tsDCS applied at the level of cervical enlargement of the spinal cord (C7-Th1 segments) on the excitability of the corticospinal system (CSS) and the correction of motor skills in healthy subjects. The effect of tsDCS was estimated by the motor-evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS) in the primary motor cortex (M1). The study involved 54 healthy adults aged 22 ± 4 years. The application of 11 min anodal tsDCS at the level of the cervical spine C7-Th1 with a current intensity of 2.5 mA did not change the MEP amplitude of the upper limb muscles, in contrast to the data that we previously obtained with a current intensity of 1.5 mA. We also found no difference in the effect of 2.5 mA stimulation on motor skill correction in healthy subjects in the nine-hole peg test (9-HPT) and the serial reaction time task (SRT) as with 1.5 mA stimulation. Our data show that an increase in the intensity of stimulation does not lead to an increase in the effects but rather reduces the effects of stimulation. These results provide information about the optimally appropriate stimulation current intensities to induce CSS excitability and the ability of tsDCS to influence motor skills in healthy adults.

4.
Life (Basel) ; 13(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37374158

ABSTRACT

The non-invasive current stimulation protocol differs significantly between the brain and spinal cord, such that when comparing the two, there is a clear predominance of protocols using transcranial direct current stimulation (tDCS) for the brain and of protocols using pulsed stimulation for the spinal cord (psSC). These protocols differ in their effects on the central nervous system and in such important parameters as stimulation intensity. In most cases, tDCS has a fixed amplitude for all subjects/patients, while psSC is usually chosen on a case-by-case basis, according to the thresholds of muscle responses. In our opinion, it is possible to use the experience of identifying thresholds during psSC to adjust the dose of the direct current for transcranial and transspinal electrical stimulation, an approach that may provide more homogeneous tDCS data.

5.
Article in English | MEDLINE | ID: mdl-36767207

ABSTRACT

Arthrogryposis multiplex congenita (AMC) and obstetrical brachial plexus palsy (OBPP) are motor disorders with similar symptoms (contractures and the disturbance of upper limb function). Both conditions present as flaccid paresis but differ from each other in the pathogenesis: AMC is a congenital condition, while OBPP results from trauma during childbirth. Despite this difference, these diseases are identical in terms of their manifestations and treatment programmes. We compared the cognitive skills of children with AMC and OBPP diagnoses with those of healthy children; we also compared the motor skills of impaired children with those of healthy ones. The patients in both groups significantly differed from the healthy children with regard to psychological parameters, such as 'visual memory capacity' and 'thinking'. Moreover, the two groups with children with AMC and OBPP significantly differed from each other in motor skill parameters, such as 'delayed motor development', 'general motor development', and the 'level of paresis'. Upper limb motor function in the OBPP children was less impaired compared to that of the AMC children. However, we did not find any significant differences in cognitive deficits between the AMC children and the OBPP children. This may indicate that motor impairment is more significant than the underlying cause for the development of cognitive impairment; however, the factors causing this phenomenon require further study (e.g., social environment, treatment, and rehabilitation programme).


Subject(s)
Arthrogryposis , Brachial Plexus Neuropathies , Cognitive Dysfunction , Motor Disorders , Neonatal Brachial Plexus Palsy , Female , Pregnancy , Humans , Child , Arthrogryposis/complications , Arthrogryposis/diagnosis , Neonatal Brachial Plexus Palsy/complications , Brachial Plexus Neuropathies/etiology , Upper Extremity , Cognitive Dysfunction/complications , Cognition
6.
Clin Neurophysiol ; 145: 11-21, 2023 01.
Article in English | MEDLINE | ID: mdl-36395708

ABSTRACT

OBJECTIVE: Obstetric brachial plexus palsy (OBPP) and amyoplasia, the classical type of arthrogryposis multiplex congenita, manifest themselves as highly limited mobility of the upper limb. At the same time, according to the embodiment cognition theories, the motor impairments might lead to the alteration of cognitive functions in OBPP/amyoplasia patients. In the current study, we examined whether OBPP/amyoplasia children exhibit altered processing of motor-related verbs. METHODS: We conducted a case-control study using clinical population and control children. Oddball series were used to elicit mismatch negativity (MMN) EEG responses. The series consisted of limb-related verbs (deviant stimuli) and matched pseudowords (standard stimuli). 27 patients and 32 control children were included in the analysis. RESULTS: We showed that MMN waveforms differed between OBPP/amyoplasia children and their control peers in the frontal and temporal electrodes when the stimuli contained hand-related verbs. In particular, the MMN peak latency in the OBPP/amyoplasia children was significantly delayed as compared with the healthy controls. At the same time, neither series with leg-related verbs nor series of pseudowords resulted in statistically significant differences. CONCLUSIONS: Our findings suggest altered processing of hand-related verbs in OBPP/amyoplasia children with hand-related disabilities. SIGNIFICANCE: Our results contribute to the growing evidence in support of the theory of embodied cognition, which proposes that various domains of cognition are shaped by bodily interactions with the environment.


Subject(s)
Brachial Plexus Neuropathies , Motor Disorders , Paralysis, Obstetric , Female , Pregnancy , Humans , Child , Case-Control Studies , Hand
7.
J Pers Med ; 12(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36579567

ABSTRACT

Embodied cognition theory suggests that motor dysfunctions affect cognition. We examined this hypothesis by inspecting whether cerebral processing of movies, featuring both goal-directed movements and content without humans, differ between children with congenital motor dysfunction and healthy controls. Electroencephalography was recorded from 23 healthy children and 23 children with limited or absent arm movement due to either arthrogryposis multiplex congenita or obstetric brachial plexus palsy. Each individual patient exhibited divergent neural responses, disclosed by significantly lower inter-subject correlation (ISC) of brain activity, during the videos compared to the healthy children. We failed to observe associations between this finding and the motor-related content of the various video scenes, suggesting that differences between the patients and controls reflect modulation of perceptual-cognitive processing of videos by upper-limb motor dysfunctions not limited to the watching-mirroring of motor actions. Thus, perceptual-cognitive processes in the brain seem to be more robustly embodied than has previously been thought.

8.
Neurobiol Learn Mem ; 192: 107622, 2022 07.
Article in English | MEDLINE | ID: mdl-35462028

ABSTRACT

Broca's area in the left hemisphere of the human neocortex has been suggested as a major hub for acquisition, storage, and access of linguistic information, abstract words in particular. Direct causal evidence for the latter, however, is still scarce; filling this gap was the goal of the present study. Using transcranial direct current stimulation (tDCS) of Broca's region, we aimed to delineate the involvement of this area in abstract and concrete word acquisition. The experiment used a between-subject design and involved 15 min of anodal or cathodal tDCS over Broca's area, or a sham/placebo control condition. The stimulation procedure was followed by a contextual learning session, in which participants were exposed to new concrete and abstract words embedded into short five-sentence texts. Finally, a set of behavioural assessment tasks was run to assess the learning outcomes immediately after the training (Day 1) and with a 24-hour delay (Day 2). The results showed that participants recognised novel abstract words more accurately after both anodal and cathodal tDCS in comparison with the sham condition on Day 1, which was also accompanied by longer recognition times (presumably due to deeper lexico-semantic processing), supporting the role of Broca's region in acquisition of abstract semantics. They were also more successful when recalling concrete words after cathodal tDCS, which indicates a degree of Broca's area involvement in forming memory circuits for concrete words as well. A decrease in the accuracy of recall of word forms and their meanings, as well as in recognition, was observed for all stimulation groups and both types of semantics on Day 2. The results suggest that both anodal and cathodal tDCS of Broca's area improves immediate contextual learning of novel vocabulary, predominantly affecting abstract semantics.


Subject(s)
Broca Area , Transcranial Direct Current Stimulation , Broca Area/physiology , Humans , Language , Semantics , Transcranial Direct Current Stimulation/methods , Vocabulary
9.
Neuropsychologia ; 168: 108156, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35026217

ABSTRACT

An accumulating body of evidence suggests that transcranial direct current stimulation (tDCS) can be used to affect language processing, including word acquisition. There has been, however, no comprehensive study of effects of tDCS of the core language areas in relation to the main word-learning mechanisms. Two principal strategies have been posited as important for natural word acquisition: explicit encoding (EE) which relies on direct instructions and repetition of material, and fast mapping (FM) which operates implicitly, via context-based inference or deduction. We used anodal and cathodal tDCS of Broca's and Wernicke's areas to assess effects of stimulation site and polarity on novel word acquisition in both EE and FM regimes. 160 participants, divided into five groups, received 15 min of cathodal or anodal tDCS over one of the two areas or a sham (placebo) stimulation before learning eight novel words, presented ten times each in a short naturalistic audio-visual word-picture association session, fully counterbalanced across different learning regimes. The outcome of novel word acquisition was measured immediately after the training using a free recall task. The results showed elevated accuracy in all real stimulation groups in comparison with sham stimulation; however, this effect only reached full significance after anodal tDCS of Broca's area. Comparisons between the two learning modes indicated that Broca's anodal tDCS significantly improved both implicit and explicit acquisition of novel vocabulary in comparison with sham tDCS, without, however, any significant differences between EE and FM regimes as such. The results indicate involvement of the left inferior-frontal neocortex in the learning of novel vocabulary and suggest a possibility to promote different types of word acquisition using anodal tDCS of this area.


Subject(s)
Transcranial Direct Current Stimulation , Broca Area/physiology , Humans , Transcranial Direct Current Stimulation/methods , Verbal Learning/physiology , Vocabulary , Wernicke Area
10.
Brain Sci ; 11(12)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34942952

ABSTRACT

The current study aimed to compare differences in the cognitive development of children with and without upper limb motor disorders. The study involved 89 children from 3 to 15 years old; 57 children with similar upper limb motor disorders and 32 healthy children. Our results showed that motor disorders could impair cognitive functions, especially memory. In particular, we found that children between 8 and 11 years old with upper limb disorders differed significantly from their healthy peers in both auditory and visual memory scales. These results can be explained by the fact that the development of cognitive functions depends on the normal development of motor skills, and the developmental delay of motor skills affects cognitive functions. Correlation analysis did not reveal any significant relationship between other cognitive functions (attention, thinking, intelligence) and motor function. Altogether, these findings point to the need to adapt general habilitation programs for children with motor disorders, considering the cognitive impairment during their development. The evaluation of children with motor impairment is often limited to their motor dysfunction, leaving their cognitive development neglected. The current study showed the importance of cognitive issues for these children. Moreover, early intervention, particularly focused on memory, can prevent some of the accompanying difficulties in learning and daily life functioning of children with movement disorders.

11.
Brain Sci ; 11(7)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34356132

ABSTRACT

and concrete words differ in their cognitive and neuronal underpinnings, but the exact mechanisms underlying these distinctions are unclear. We investigated differences between these two semantic types by analysing brain responses to newly learnt words with fully controlled psycholinguistic properties. Experimental participants learned 20 novel abstract and concrete words in the context of short stories. After the learning session, event-related potentials (ERPs) to newly learned items were recorded, and acquisition outcomes were assessed behaviourally in a range of lexical and semantic tasks. Behavioural results showed better performance on newly learnt abstract words in lexical tasks, whereas semantic assessments showed a tendency for higher accuracy for concrete words. ERPs to novel abstract and concrete concepts differed early on, ~150 ms after the word onset. Moreover, differences between novel words and control untrained pseudowords were observed earlier for concrete (~150 ms) than for abstract (~200 ms) words. Distributed source analysis indicated bilateral temporo-parietal activation underpinning newly established memory traces, suggesting a crucial role of Wernicke's area and its right-hemispheric homologue in word acquisition. In sum, we report behavioural and neurophysiological processing differences between concrete and abstract words evident immediately after their controlled acquisition, confirming distinct neurocognitive mechanisms underpinning these types of semantics.

12.
Sci Rep ; 11(1): 1508, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452288

ABSTRACT

Previous behavioural and neuroimaging research suggested distinct cortical systems involved in processing abstract and concrete semantics; however, there is a dearth of causal evidence to support this. To address this, we applied anodal, cathodal, or sham (placebo) tDCS over Wernicke's area before a session of contextual learning of novel concrete and abstract words (n = 10 each), presented five times in short stories. Learning effects were assessed at lexical and semantic levels immediately after the training and, to attest any consolidation effects of overnight sleep, on the next day. We observed successful learning of all items immediately after the session, with decreased performance in Day 2 assessment. Importantly, the results differed between stimulation conditions and tasks. Whereas the accuracy of semantic judgement for abstract words was significantly lower in the sham and anodal groups on Day 2 vs. Day 1, no significant performance drop was observed in the cathodal group. Similarly, the cathodal group showed no significant overnight performance reduction in the free recall task for either of the stimuli, unlike the other two groups. Furthermore, between-group analysis showed an overall better performance of both tDCS groups over the sham group, particularly expressed for abstract semantics and cathodal stimulation. In sum, the results suggest overlapping but diverging brain mechanisms for concrete and abstract semantics and indicate a larger degree of involvement of core language areas in storing abstract knowledge. Furthermore, they demonstrate a possiblity to improve learning outcomes using neuromodulatory techniques.

13.
Psychol Russ ; 14(2): 171-192, 2021.
Article in English | MEDLINE | ID: mdl-36810997

ABSTRACT

Background: A rich vocabulary supports human achievements in socio-economic activities, education, and communication. It is therefore important to clarify the nature of language acquisition as a complex multidimensional process. However, both the psychological and neurophysiological mechanisms underpinning language learning, as well as the links between them, are still poorly understood. Objective: This study aims to explore the psychological and neurophysiological correlates of successful word acquisition in a person's native language. Design: Thirty adults read sentences with novel nouns, following which the participants' electroencephalograms were recorded during a word-reading task. Event- related potentials in response to novel words and alpha oscillation parameters (amplitude, variability, and long-range temporal correlation dynamics) were analyzed. Learning outcomes were assessed at the lexical and semantic levels. Psychological variables measured using Amthauer's test (verbal abilities), BIS/BAS scales (motivation), and the MSTAT-1 (ambiguity tolerance) and alpha oscillation parameters were factored. Results: Better recognition of novel words was related to two factors which had high factor loadings for all measured alpha oscillation parameters, indicating the role of attention networks and respective neural activity for enabling information processing. More successful learners had lower P200 amplitude, which also suggests higher attention-system involvement. Another factor predicted better acquisition of word meanings for less ambiguity-tolerant students, while the factor which pooled logical conceptual thinking ability and persistence in goal-reaching, positively correlated with acquisition of both word forms and meanings. Conclusion: The psychological factors predominantly correlated with word-learning success in semantic tasks, while neurophysiological variables were linked to performance in the recognition task.

14.
Sci Rep ; 9(1): 18046, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31772256

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Sci Rep ; 9(1): 12858, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31492895

ABSTRACT

We applied transcranial alternating current stimulation (tACS) to the primary motor cortex (M1) at different frequencies during an index-thumb pinch-grip observation task. To estimate changes in the corticospinal output, we used the size of motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS) of M1 using an online MRI-guided simultaneous TMS-tACS approach. The results of the beta-tACS confirm a non-selective increase in corticospinal excitability in subjects at rest; an increase was observed for both of the tested hand muscles, the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM). However, during action observation of the pinch-grip movement, the increase of corticospinal excitability was only observed for the prime mover FDI muscle and took place during alpha-tACS, while gamma-tACS affected both the FDI and control muscle (ADM) responses. These phenomena likely reflect the hypothesis that the mu and gamma rhythms specifically index the downstream modulation of primary sensorimotor areas by engaging mirror neuron activity. The current neuromodulation approach confirms that tACS can be used to induce neurophysiologically detectable state-dependent enhancement effects, even in complex motor-cognitive tasks.


Subject(s)
Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Muscle, Skeletal/physiology , Pyramidal Tracts/physiology , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods , Adult , Electromyography/methods , Female , Gamma Rhythm , Humans , Male , Motor Neurons/physiology , Movement/physiology , Sensorimotor Cortex/physiology
16.
Front Hum Neurosci ; 13: 267, 2019.
Article in English | MEDLINE | ID: mdl-31427938

ABSTRACT

The nature of abstract and concrete semantics and differences between them have remained a debated issue in psycholinguistic and cognitive studies for decades. Most of the available behavioral and neuroimaging studies reveal distinctions between these two types of semantics, typically associated with a so-called "concreteness effect." Many attempts have been made to explain these differences using various approaches, from purely theoretical linguistic and cognitive frameworks to neuroimaging experiments. In this brief overview, we will try to provide a snapshot of these diverse views and relationships between them and highlight the crucial issues preventing this problem from being solved. We will argue that one potentially beneficial way forward is to identify the neural mechanisms underpinning acquisition of the different types of semantics (e.g., by using neurostimulation techniques to establish causal relationships), which may help explain the distinctions found between the processing of concrete and abstract semantics.

17.
J Vis Exp ; (149)2019 07 13.
Article in English | MEDLINE | ID: mdl-31355805

ABSTRACT

Language is a highly important yet poorly understood function of the human brain. While studies of brain activation patterns during language comprehension are abundant, what is often critically missing is causal evidence of brain areas' involvement in a particular linguistic function, not least due to the unique human nature of this ability and a shortage of neurophysiological tools to study causal relationships in the human brain noninvasively. Recent years have seen a rapid rise in the use of transcranial direct current stimulation (tDCS) of the human brain, an easy, inexpensive and safe noninvasive technique that can modulate the state of the stimulated brain area (putatively by shifting excitation/inhibition thresholds), enabling a study of its particular contribution to specific functions. While mostly focusing on motor control, the use of tDCS is becoming more widespread in both basic and clinical research on higher cognitive functions, language included, but the procedures for its application remain variable. Here, we describe the use of tDCS in a psycholinguistic word-learning experiment. We present the techniques and procedures for application of cathodal and anodal stimulation of core language areas of Broca and Wernicke in the left hemisphere of the human brain, describe the procedures of creating balanced sets of psycholinguistic stimuli, a controlled yet naturalistic learning regime, and a comprehensive set of techniques to assess the learning outcomes and tDCS effects. As an example of tDCS application, we show that cathodal stimulation of Wernicke's area prior to a learning session can impact word learning efficiency. This impact is both present immediately after learning and, importantly, preserved over longer time after the physical effects of stimulation wear off, suggesting that tDCS can have long-term influence on linguistic storage and representations in the human brain.


Subject(s)
Brain Mapping/methods , Broca Area/physiology , Language , Verbal Learning/physiology , Wernicke Area/physiology , Humans , Neuropsychological Tests , Transcranial Direct Current Stimulation , Vocabulary
18.
J Neurosci ; 37(20): 5074-5083, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28438968

ABSTRACT

Cognitive dissonance theory suggests that our preferences are modulated by the mere act of choosing. A choice between two similarly valued alternatives creates psychological tension (cognitive dissonance) that is reduced by a postdecisional reevaluation of the alternatives. We measured EEG of human subjects during rest and free-choice paradigm. Our study demonstrates that choices associated with stronger cognitive dissonance trigger a larger negative frontocentral evoked response similar to error-related negativity, which has in turn been implicated in general performance monitoring. Furthermore, the amplitude of the evoked response is correlated with the reevaluation of the alternatives. We also found a link between individual neural dynamics (long-range temporal correlations) of the frontocentral cortices during rest and follow-up neural and behavioral effects of cognitive dissonance. Individuals with stronger resting-state long-range temporal correlations demonstrated a greater postdecisional reevaluation of the alternatives and larger evoked brain responses associated with stronger cognitive dissonance. Thus, our results suggest that cognitive dissonance is reflected in both resting-state and choice-related activity of the prefrontal cortex as part of the general performance-monitoring circuitry.SIGNIFICANCE STATEMENT Contrary to traditional decision theory, behavioral studies repeatedly demonstrate that our preferences are modulated by the mere act of choosing. Difficult choices generate psychological (cognitive) dissonance, which is reduced by the postdecisional devaluation of unchosen options. We found that decisions associated with a higher level of cognitive dissonance elicited a stronger negative frontocentral deflection that peaked ∼60 ms after the response. This activity shares similar spatial and temporal features as error-related negativity, the electrophysiological correlate of performance monitoring. Furthermore, the frontocentral resting-state activity predicted the individual magnitude of preference change and the strength of cognitive dissonance-related neural activity.


Subject(s)
Brain Mapping/methods , Choice Behavior/physiology , Cognitive Dissonance , Electroencephalography/methods , Nerve Net/physiology , Prefrontal Cortex/physiology , Conflict, Psychological , Female , Humans , Male , Task Performance and Analysis , Young Adult
19.
Front Hum Neurosci ; 10: 504, 2016.
Article in English | MEDLINE | ID: mdl-27774060

ABSTRACT

Inter- and intra-subject variability of the motor evoked potentials (MEPs) to TMS is a well-known phenomenon. Although a possible link between this variability and ongoing brain oscillations was demonstrated, the results of the studies are not consistent with each other. Exploring this topic further is important since the modulation of MEPs provides unique possibility to relate oscillatory cortical phenomena to the state of the motor cortex probed with TMS. Given that alpha oscillations were shown to reflect cortical excitability, we hypothesized that their power and variability might explain the modulation of subject-specific MEPs to single- and paired-pulse TMS (spTMS, ppTMS, respectively). Neuronal activity was recorded with multichannel electroencephalogram. We used spTMS and two ppTMS conditions: intracortical facilitation (ICF) and short-interval intracortical inhibition (SICI). Spearman correlations were calculated within and across subjects between MEPs and the pre-stimulus power of alpha oscillations in low (8-10 Hz) and high (10-12 Hz) frequency bands. Coefficient of quartile variation was used to measure variability. Across-subject analysis revealed no difference in the pre-stimulus alpha power among the TMS conditions. However, the variability of high-alpha power in spTMS condition was larger than in the SICI condition. In ICF condition pre-stimulus high-alpha power variability correlated positively with MEP amplitude variability. No correlation has been observed between the pre-stimulus alpha power and MEP responses in any of the conditions. Our results show that the variability of the alpha oscillations can be more predictive of TMS effects than the commonly used power of oscillations and we provide further support for the dissociation of high and low-alpha bands in predicting responses produced by the stimulation of the motor cortex.

20.
Neuroscience ; 331: 109-19, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27318302

ABSTRACT

While variability of the motor responses to transcranial magnetic stimulation (TMS) is widely acknowledged, little is known about its central origin. One plausible explanation for such variability may relate to different neuronal states defining the reactivity of the cortex to TMS. In this study intrinsic spatio-temporal neuronal dynamics were estimated with Long-Range Temporal Correlations (LRTC) in order to predict the inter-individual differences in the strength of intra-cortical facilitation (ICF) and short-interval intracortical inhibition (SICI) produced by paired-pulse TMS (ppTMS) of the left primary motor cortex. LRTC in the alpha frequency range were assessed from multichannel electroencephalography (EEG) obtained at rest before and after the application of and single-pulse TMS (spTMS) and ppTMS protocols. For the EEG session, preceding TMS application, we showed a positive correlation across subjects between the strength of ICF and LRTC in the fronto-central and parietal areas. This in turn attests to the existence of subject-specific neuronal phenotypes defining the reactivity of the brain to ppTMS. In addition, we also showed that ICF was associated with the changes in neuronal dynamics in the EEG session after the application of the stimulation. This result provides a complementary evidence for the recent findings demonstrating that the cortical stimulation with sparse non-regular stimuli might have considerable long-lasting effects on the cortical activity.


Subject(s)
Alpha Rhythm/physiology , Motor Cortex/physiology , Adult , Electroencephalography , Electromyography , Evoked Potentials, Motor/physiology , Female , Hand/physiology , Humans , Male , Muscle, Skeletal/physiology , Neural Inhibition/physiology , Time Factors , Transcranial Magnetic Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...