Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Syst Neurosci ; 16: 800280, 2022.
Article in English | MEDLINE | ID: mdl-35431820

ABSTRACT

How do we gauge understanding? Tests of understanding, such as Turing's imitation game, are numerous; yet, attempts to achieve a state of understanding are not satisfactory assessments. Intelligent agents designed to pass one test of understanding often fall short of others. Rather than approaching understanding as a system state, in this paper, we argue that understanding is a process that changes over time and experience. The only window into the process is through the lens of natural language. Usefully, failures of understanding reveal breakdowns in the process. We propose a set of natural language-based probes that can be used to map the degree of understanding a human or intelligent system has achieved through combinations of successes and failures.

2.
Front Robot AI ; 8: 652776, 2021.
Article in English | MEDLINE | ID: mdl-34109222

ABSTRACT

Trust calibration for a human-machine team is the process by which a human adjusts their expectations of the automation's reliability and trustworthiness; adaptive support for trust calibration is needed to engender appropriate reliance on automation. Herein, we leverage an instance-based learning ACT-R cognitive model of decisions to obtain and rely on an automated assistant for visual search in a UAV interface. This cognitive model matches well with the human predictive power statistics measuring reliance decisions; we obtain from the model an internal estimate of automation reliability that mirrors human subjective ratings. The model is able to predict the effect of various potential disruptions, such as environmental changes or particular classes of adversarial intrusions on human trust in automation. Finally, we consider the use of model predictions to improve automation transparency that account for human cognitive biases in order to optimize the bidirectional interaction between human and machine through supporting trust calibration. The implications of our findings for the design of reliable and trustworthy automation are discussed.

3.
Front Psychol ; 12: 594255, 2021.
Article in English | MEDLINE | ID: mdl-33935854

ABSTRACT

In team-based tasks, successful communication and mutual understanding are essential to facilitate team coordination and performance. It is well-established that an important component of human conversation (whether in speech, text, or any medium) is the maintenance of common ground. Maintaining common ground has a number of associated processes in which conversational participants engage. Many of these processes are lacking in current synthetic teammates, and it is unknown to what extent this lack of capabilities affects their ability to contribute during team-based tasks. We focused our research on how teams package information within a conversation, by which we mean specifically (1) whether information is explicitly mentioned or implied, and (2) how multiple pieces of information are ordered both within single communications and across multiple communications. We re-analyzed data collected from a simulated remotely-piloted aerial system (RPAS) task in which team members had to specify speed, altitude, and radius restrictions. The data came from three experiments: the "speech" experiment, the "text" experiment, and the "evaluation" experiment (which had a condition that included a synthetic teammate). We asked first whether teams settled on a specific routine for communicating the speed, altitude, and radius restrictions, and whether this process was different if the teams communicated in speech compared to text. We then asked how receiving special communication instructions in the evaluation experiment impacted the way the human teammates package information. We found that teams communicating in either speech or text tended to use a particular order for mentioning the speed, altitude, and radius. Different teams also chose different orders from one another. The teams in the evaluation experiment, however, showed unnaturally little variability in their information ordering and were also more likely to explicitly mention all restrictions even when they did not apply. Teams in the speech and text experiments were more likely to leave unnecessary restrictions unmentioned, and were also more likely to convey the restrictions across multiple communications. The option to converge on different packaging routines may have contributed to improved performance in the text experiment compared some of the conditions in the evaluation experiment.

4.
Behav Res Methods ; 50(5): 2074-2096, 2018 10.
Article in English | MEDLINE | ID: mdl-29076106

ABSTRACT

The first stage of analyzing eye-tracking data is commonly to code the data into sequences of fixations and saccades. This process is usually automated using simple, predetermined rules for classifying ranges of the time series into events, such as "if the dispersion of gaze samples is lower than a particular threshold, then code as a fixation; otherwise code as a saccade." More recent approaches incorporate additional eye-movement categories in automated parsing algorithms by using time-varying, data-driven thresholds. We describe an alternative approach using the beta-process vector auto-regressive hidden Markov model (BP-AR-HMM). The BP-AR-HMM offers two main advantages over existing frameworks. First, it provides a statistical model for eye-movement classification rather than a single estimate. Second, the BP-AR-HMM uses a latent process to model the number and nature of the types of eye movements and hence is not constrained to predetermined categories. We applied the BP-AR-HMM both to high-sampling rate gaze data from Andersson et al. (Behavior Research Methods 49(2), 1-22 2016) and to low-sampling rate data from the DIEM project (Mital et al., Cognitive Computation 3(1), 5-24 2011). Driven by the data properties, the BP-AR-HMM identified over five categories of movements, some which clearly mapped on to fixations and saccades, and others potentially captured post-saccadic oscillations, smooth pursuit, and various recording errors. The BP-AR-HMM serves as an effective algorithm for data-driven event parsing alone or as an initial step in exploring the characteristics of gaze data sets.


Subject(s)
Algorithms , Data Collection , Eye Movements , Markov Chains , Data Visualization , Humans
5.
Cogn Res Princ Implic ; 2(1): 19, 2017.
Article in English | MEDLINE | ID: mdl-28367499

ABSTRACT

The visual system can be highly influenced by changes to visual presentation. Thus, numerous techniques have been developed to augment imagery in an attempt to improve human perception. The current paper examines the potential impact of one such enhancement, multispectral image fusion, where imagery captured in varying spectral bands (e.g., visible, thermal, night vision) is algorithmically combined to produce an output to strengthen visual perception. We employ ideal observer analysis over a series of experimental conditions to (1) establish a framework for testing the impact of image fusion over the varying aspects surrounding its implementation (e.g., stimulus content, task) and (2) examine the effectiveness of fusion on human information processing efficiency in a basic application. We used a set of rotated Landolt C images captured with a number of individual sensor cameras and combined across seven traditional fusion algorithms (e.g., Laplacian pyramid, principal component analysis, averaging) in a 1-of-8 orientation task. We found that, contrary to the idea of fused imagery always producing a greater impact on perception, single-band imagery can be just as influential. Additionally, efficiency data were shown to fluctuate based on sensor combination instead of fusion algorithm, suggesting the need for examining multiple factors to determine the success of image fusion. Our use of ideal observer analysis, a popular technique from the vision sciences, provides not only a standard for testing fusion in direct relation to the visual system but also allows for comparable examination of fusion across its associated problem space of application.

6.
Behav Res Methods ; 46(2): 307-30, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24019062

ABSTRACT

Systems factorial technology (SFT) comprises a set of powerful nonparametric models and measures, together with a theory-driven experiment methodology termed the double factorial paradigm (DFP), for assessing the cognitive information-processing mechanisms supporting the processing of multiple sources of information in a given task (Townsend and Nozawa, Journal of Mathematical Psychology 39:321-360, 1995). We provide an overview of the model-based measures of SFT, together with a tutorial on designing a DFP experiment to take advantage of all SFT measures in a single experiment. Illustrative examples are given to highlight the breadth of applicability of these techniques across psychology. We further introduce and demonstrate a new package for performing SFT analyses using R for statistical computing.


Subject(s)
Cognition/physiology , Computer Simulation , Models, Psychological , Statistics, Nonparametric , Systems Analysis , Attention/physiology , Factor Analysis, Statistical , Humans , Stochastic Processes , Task Performance and Analysis , Visual Perception/physiology , Workload/psychology
7.
Neuropsychologia ; 48(13): 3743-56, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20736026

ABSTRACT

In two experiments we determined the electrophysiological substrates of figural aftereffects in face adaptation using compressed and expanded faces. In Experiment 1, subjects viewed a series of compressed and expanded faces. Results demonstrated that distortion systematically modulated the peak amplitude of the P250 event-related potential (ERP) component. As the amount of perceived distortion in a face increased, the peak amplitude of the P250 component decreased, regardless of whether the physical distortion was compressive or expansive. This provided an ERP metric of the degree of perceived distortion. In Experiment 2, we examined the effects of adaptation on the P250 amplitude by introducing an adapting stimulus that affected the subject's perception of the distorted test faces as measured through normality judgments. The set of test faces was held constant and the adapting stimulus was systematically varied across experimental days. Adapting to a compressed face made a less compressed test face appear more normal and an expanded test face more distorted as measured by normality ratings. We found that the adaptation conditions that increased the perceived distortion of the distorted test faces also decreased the amplitude of the P250. Likewise, adaptation conditions that decreased the perceived distortion of the distorted test faces also increased the amplitude of the P250. The results demonstrate that perceptual adaptation to compressed or expanded faces affected not only the behavioral normality judgments but also the electrophysiological correlates of face processing in the window of 190-260 ms after stimulus onset.


Subject(s)
Adaptation, Physiological/physiology , Cerebral Cortex/physiology , Evoked Potentials/physiology , Pattern Recognition, Visual/physiology , Perceptual Distortion/physiology , Adolescent , Adult , Brain Mapping , Electroencephalography , Face , Female , Humans , Male , Photic Stimulation
8.
J Math Psychol ; 54(1): 53-72, 2010 Feb.
Article in English | MEDLINE | ID: mdl-23750050

ABSTRACT

Previous studies of global-local processing in autism spectrum disorders (ASDs) have indicated mixed findings, with some evidence of a local processing bias, or preference for detail-level information, and other results suggesting typical global advantage, or preference for the whole or gestalt. Findings resulting from this paradigm have been used to argue for or against a detail focused processing bias in ASDs, and thus have important theoretical implications. We applied Systems Factorial Technology, and the associated Double Factorial Paradigm (both defined in the text), to examine information processing characteristics during a divided attention global-local task in high-functioning individuals with an ASD and typically developing controls. Group data revealed global advantage for both groups, contrary to some current theories of ASDs. Information processing models applied to each participant revealed that task performance, although showing no differences at the group level, was supported by different cognitive mechanisms in ASD participants compared to controls. All control participants demonstrated inhibitory parallel processing and the majority demonstrated a minimum-time stopping rule. In contrast, ASD participants showed exhaustive parallel processing with mild facilitatory interactions between global and local information. Thus our results indicate fundamental differences in the stopping rules and channel dependencies in individuals with an ASD.

SELECTION OF CITATIONS
SEARCH DETAIL
...