Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 1286, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36890174

ABSTRACT

Ca2+ release-activated Ca2+ (CRAC) channels, indispensable for the immune system and various other human body functions, consist of two transmembrane (TM) proteins, the Ca2+-sensor STIM1 in the ER membrane and the Ca2+ ion channel Orai1 in the plasma membrane. Here we employ genetic code expansion in mammalian cell lines to incorporate the photocrosslinking unnatural amino acids (UAA), p-benzoyl-L-phenylalanine (Bpa) and p-azido-L-phenylalanine (Azi), into the Orai1 TM domains at different sites. Characterization of the respective UAA-containing Orai1 mutants using Ca2+ imaging and electrophysiology reveal that exposure to UV light triggers a range of effects depending on the UAA and its site of incorporation. In particular, photoactivation at A137 using Bpa in Orai1 activates Ca2+ currents that best match the biophysical properties of CRAC channels and are capable of triggering downstream signaling pathways such as nuclear factor of activated T-cells (NFAT) translocation into the nucleus without the need for the physiological activator STIM1.


Subject(s)
Calcium Release Activated Calcium Channels , Animals , Humans , Calcium Release Activated Calcium Channels/metabolism , Calcium Channels/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Membrane Proteins/metabolism , Cell Membrane/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Calcium/metabolism , Calcium Signaling/physiology , Mammals/metabolism , Neoplasm Proteins/metabolism
2.
Curr HIV Res ; 20(3): 213-221, 2022.
Article in English | MEDLINE | ID: mdl-35331114

ABSTRACT

BACKGROUND: Typically, genotypic resistance testing is recommended at the start of antiretroviral therapy and is even mandatory in cases of virologic failure. The material of choice is plasma viral RNA. However, in patients with low viremia (viral load < 500 copies/ml), resistance testing by population-based sequencing is very difficult. OBJECTIVE: Therefore, we aimed to investigate whether next generation sequencing (NGS) from proviral DNA and RNA could be an alternative. MATERIAL AND METHODS: EDTA blood samples (n = 36) from routine clinical viral load testing were used for the study. Viral loads ranged from 96 to 390,000 copies/mL, with 100% of samples having low viremia. Distribution of subtypes; A (n = 2), B (n = 16), C (n = 4), D (n = 2), G (1), CRF02 AG (n = 5), CRF01 AE (n = 5), undefined/mixed (n = 4). The extracted consensus sequences were uploaded to the Stanford HIV Drug Resistance Data Base and Geno2pheno for online analysis of drug resistance mutations and resistance factors. RESULTS: A total of 2476 variants or drug resistance mutations (DRMs) were detected with Sanger sequencing, compared with 2892 variants with NGS. An average of 822/1008 variants were identified in plasma viral RNA by Sanger or NGS sequencing, 834/956 in cellular viral RNA, and 820/928 in cellular viral DNA. CONCLUSION: Both methods are well suited for the detection of HIV substitutions or drug resistance mutations. Our results suggest that cellular RNA or cellular viral DNA is an informative alternative to plasma viral RNA for variant detection in patients with low viremia, as shown by the high correlation of variants in the different viral pools. We show that by using UDS, a plus of two DRMs per patient becomes visible, which can make a big difference in the assessment of the expected resistance behavior of the virus.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Animals , Anti-HIV Agents/therapeutic use , DNA, Viral/genetics , Drug Resistance, Viral/genetics , Edetic Acid/therapeutic use , Genomics , Genotype , HIV Infections/drug therapy , HIV Seropositivity/drug therapy , HIV-1/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Leukocytes, Mononuclear , Life Cycle Stages , Mutation , Proviruses/genetics , RNA, Viral/genetics , Viral Load , Viremia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...