Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Can J Plant Sci ; 90(1): 49-60, 2010.
Article in English | MEDLINE | ID: mdl-29875504

ABSTRACT

Common bean (Phaseolus vulgaris L.) is an important source of dietary protein and minerals worldwide. Genes conditioning variability for mineral contents are not clearly understood. Our ultimate goal is to identify genes conditioning genetic variation for Zn and Fe content. To establish mapping populations for this objective, we tested mineral content of 29 common bean genotypes. Chemical analyses revealed significant genetic variability for seed Zn and Fe contents among the genotypes. Genetic diversity was evaluated with 49 primer pairs, of which 23 were simple sequence repeats (SSR), 16 were developed from tentative consensus (TC) sequences, and 10 were generated from common bean NBS-LRR gene sequences. The discriminatory ability of molecular markers for identifying allelic variation among genotypes was estimated by polymorphism information content (PIC) and the genetic diversity was measured from genetic similarities between genotypes. Primers developed from NBS-LRR gene sequences were highly polymorphic in both PIC values and number of alleles (0.82 and 5.3), followed by SSRs (0.56 and 3.0), and markers developed from TC (0.39 and 2.0). genetic similarity values between genotypes ranged from 14.0 (JaloEEP558 and DOR364) to 91.4 (MIB152 and MIB465). Cluster analysis clearly discriminated the genotypes into Mesoamerican and Andean gene pools. Common bean genotypes were selected to include in crossing to enhance seed Zn and Fe content based on genetic diversity and seed mineral contents of the genotypes.

2.
J Food Sci ; 74(5): H147-54, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19646048

ABSTRACT

Nutritionally enhanced beans (NEB) with more Fe and Zn than conventional beans (CB) and nutritionally enhanced maize (NEM) with more tryptophan and lysine than conventional maize (CM) were developed as part of a crop-biofortification strategy to improve human nutrition. Proxy measures were used to assess Fe and Zn bioavailability and protein digestibility of a bean recipe (fríjol sancochado) and a maize-milk recipe (mazamorra) prepared with enhanced or conventional crops in Colombia. Fe concentration was similar in the cooked NEB and CB and in NEM and CM (P> or = 0.05); in vitro Fe dialyzability was similar in cooked NEB (9.52%) and CB (9.72%) and greater for NEM (37.01%) than CM (32.24%). Zn concentration was higher in the uncooked and cooked NEB than in the CB (P < 0.05); phytate: Zn molar ratios were high in cooked NEB (36: 1) and CB (47: 1), suggesting low Zn bioavailability, and not different from each other (P = 0.07). There were no differences in Zn concentration or phytate: Zn molar ratio in the maize recipes. Nitrogen, tryptophan, and lysine concentrations were higher in the cooked NEM than CM; nitrogen was higher in the cooked NEB than CB (P < 0.05). In vitro protein digestibility was comparable (82% to 83%) for NEM and CM and higher for NEB (84%) than for CB (82%). The higher nutrient concentrations + similar bioavailability (protein in NEM, Zn in NEB), same nutrient concentrations + higher bioavailability (Fe in NEM) or higher nutrient concentrations + higher bioavailability (protein in NEB) can translate into more nutrients absorbed and utilized by the body.


Subject(s)
Dietary Proteins/pharmacokinetics , Fabaceae/metabolism , Food, Fortified , Iron, Dietary/pharmacokinetics , Zea mays/metabolism , Zinc/pharmacokinetics , Biological Availability , Child, Preschool , Colombia , Colorimetry , Diet/methods , Humans , Lysine/metabolism , Nitrogen/metabolism , Nutritional Status/physiology , Nutritive Value , Phytic Acid/metabolism , Spectrophotometry, Atomic , Tryptophan/metabolism
3.
Genet Mol Res ; 6(3): 691-706, 2007 Sep 30.
Article in English | MEDLINE | ID: mdl-18050090

ABSTRACT

The present study describes a new set of 61 polymorphic microsatellite markers for beans and the construction of a genetic map using the BAT93 x Jalo EEP558 (BJ) population for the purpose of developing a reference linkage map for common bean (Phaseolus vulgaris). The main objectives were to integrate new microsatellites on the existing framework map of the BJ population, and to develop the first linkage map for the BJ population based exclusively on microsatellites. Of the total of 264 microsatellites evaluated for polymorphism, 42.8% showed polymorphism between the genitors. An integrated map was created totaling 199 mapped markers in 13 linkage groups, with an observed length of 1358 cM and a mean distance between markers of 7.23 cM. For the map constructed exclusively with microsatellites, 106 markers were placed in 12 groups with a total length of 606.8 cM and average distance of 6.8 cM. Linkage group designation and marker order for BM microsatellites generally agreed with previous mapping, while the new microsatellites were well distributed across the genome, corroborating the utility of the BJ population for a reference map. The extensive use of the microsatellites and the availability of a reference map can help in the development of other genetic maps for common bean through the transfer of information of marker order and linkage, which will allow comparative analysis and map integration, especially for future quantitative trait loci and association mapping studies.


Subject(s)
Chromosome Mapping , Hybridization, Genetic , Microsatellite Repeats/genetics , Phaseolus/genetics , Chromosome Segregation , Chromosomes, Plant/metabolism , Genetic Linkage , Genetic Markers , Minisatellite Repeats , Polymorphism, Genetic
4.
Theor Appl Genet ; 116(1): 29-43, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17924092

ABSTRACT

The Andean gene pool of common bean (Phaseolus vulgaris L.) has high levels of morphological diversity in terms of seed color and size, growth habit and agro-ecological adaptation, but previously was characterized by low levels of molecular marker diversity. Three races have been described within the Andean gene pool: Chile, Nueva Granada and Peru. The objective of this study was to characterize a collection of 123 genotypes representing Andean bean diversity with 33 microsatellite markers that have been useful for characterizing race structure in common beans. The genotypes were from both the primary center of origin as well as secondary centers of diversity to which Andean beans spread and represented all three races of the gene pool. In addition we evaluated a collection of landraces from Colombia to determine if the Nueva Granada and Peru races could be distinguished in genotypes from the northern range of the primary center. Multiple correspondence analyses of the Andean race representatives identified two predominant groups corresponding to the Nueva Granada and Peru races. Some of the Chile race representatives formed a separate group but several that had been defined previously as from this race grouped with the other races. Gene flow was more notable between Nueva Granada and Peru races than between these races and the Chile race. Among the Colombian genotypes, the Nueva Granada and Peru races were identified and introgression between these two races was especially notable. The genetic diversity within the Colombian genotypes was high, reaffirming the importance of this region as an important source of germplasm. Results of this study suggest that the morphological classification of all climbing beans as Peru race genotypes and all bush beans as Nueva Granada race genotypes is erroneous and that growth habit traits have been mixed in both races, requiring a re-adjustment in the concept of morphological races in Andean beans.


Subject(s)
Genes, Plant , Genetic Variation , Microsatellite Repeats/genetics , Phaseolus/classification , Phaseolus/genetics , DNA, Plant , Gene Pool , Genetics, Population , Genotype , Phaseolus/growth & development , Phylogeny , Polymorphism, Genetic
5.
Genet. mol. res. (Online) ; 6(3): 691-706, 2007. ilus, tab
Article in English | LILACS | ID: lil-498900

ABSTRACT

The present study describes a new set of 61 polymorphic microsatellite markers for beans and the construction of a genetic map using the BAT93 x Jalo EEP558 (BJ) population for the purpose of developing a reference linkage map for common bean (Phaseolus vulgaris). The main objectives were to integrate new microsatellites on the existing framework map of the BJ population, and to develop the first linkage map for the BJ population based exclusively on microsatellites. Of the total of 264 microsatellites evaluated for polymorphism, 42.8% showed polymorphism between the genitors. An integrated map was created totaling 199 mapped markers in 13 linkage groups, with an observed length of 1358 cM and a mean distance between markers of 7.23 cM. For the map constructed exclusively with microsatellites, 106 markers were placed in 12 groups with a total length of 606.8 cM and average distance of 6.8 cM. Linkage group designation and marker order for BM microsatellites generally agreed with previous mapping, while the new microsatellites were well distributed across the genome, corroborating the utility of the BJ population for a reference map. The extensive use of the microsatellites and the availability of a reference map can help in the development of other genetic maps for common bean through the transfer of information of marker order and linkage, which will allow comparative analysis and map integration, especially for future quantitative trait loci and association mapping studies.


Subject(s)
Chromosome Mapping , Hybridization, Genetic , Phaseolus/genetics , Microsatellite Repeats/genetics , Chromosome Segregation , Chromosomes, Plant/metabolism , Genetic Linkage , Genetic Markers , Minisatellite Repeats , Polymorphism, Genetic
6.
Theor Appl Genet ; 114(1): 143-54, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17047911

ABSTRACT

Common bean (Phaseolus vulgaris L.) cultivars are distinguished morphologically, agronomically and ecologically into specific races within each of the two gene pools found for the species (Andean and Mesoamerican). The objective of this study was to describe the race structure of the Mesoamerican gene pool using microsatellite markers. A total of 60 genotypes previously described as pertaining to specific Mesoamerican races as well as two Andean control genotypes were analyzed with 52 markers. A total of 267 bands were generated with an average of 5.1 alleles per marker and 0.297 heterozygosity across all microsatellites. Correspondence analysis identified two major groups equivalent to the Mesoamerica race and a group containing both Durango and Jalisco race genotypes. Two outlying individuals were classified as potentially of the Guatemala race although this race does not have a defined structure and previously classified members of this race were classified with other races. Population structure analysis with K = 1-4 agreed with this classification. The genetic diversity based on Nei's index for the entire set of genotypes was 0.468 while this was highest for the Durango-Jalisco group (0.414), intermediate for race Mesoamerica (0.340) and low for race Guatemala (0.262). Genetic differentiation (G (ST)) between the Mesoamerican races was 0.27 while genetic distance and identity showed race Durango and Jalisco individuals to be closely related with high gene flow (N (m)) both between these two races (1.67) and between races Durango and Mesoamerica (1.58). Observed heterozygosity was low in all the races as would be expected for an inbreeding species. The analysis with microsatellite markers identified subgroups, which agreed well with commercial class divisions, and seed size was the main distinguishing factor between the two major groups identified.


Subject(s)
Genes, Plant , Microsatellite Repeats , Phaseolus/classification , Phaseolus/genetics , Genetic Variation , Phylogeny , Polymorphism, Genetic
7.
Radiat Prot Dosimetry ; 119(1-4): 454-7, 2006.
Article in English | MEDLINE | ID: mdl-16735565

ABSTRACT

We have developed a system to irradiate samples and record radioluminescence (RL), optically stimulated luminescence (OSL), and thermoluminescence (TL) at temperatures ranging from -150 degrees C to 200 degrees C. The system consists of a cryostat, an irradiation/stimulation unit fitted with an X-ray tube (40 kV Moxtek) and a quartz window for optical stimulation, and a detection unit that utilises a photomultiplier tube and an interchangeable filter pack. Experiments have been conducted with quartz and albite (a feldspar). TL and OSL experiments show that several optically sensitive trapping states are stable below -50 degrees C. In addition, an increase in OSL is seen as the OSL stimulation temperature is lowered below -50 degrees C, and an increase in RL is apparent as the temperature is lowered during irradiation. This indicates that not only are optically sensitive low temperature traps present but that luminescence becomes more efficient at low temperatures.


Subject(s)
Algorithms , Aluminum Silicates/analysis , Aluminum Silicates/radiation effects , Materials Testing/methods , Potassium Compounds/analysis , Potassium Compounds/radiation effects , Quartz/analysis , Quartz/radiation effects , Thermoluminescent Dosimetry/methods , Temperature
8.
Theor Appl Genet ; 113(1): 100-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16614831

ABSTRACT

A diversity survey was used to estimate allelic diversity and heterozygosity of 129 microsatellite markers in a panel of 44 common bean (Phaseolus vulgaris L.) genotypes that have been used as parents of mapping populations. Two types of microsatellites were evaluated, based respectively on gene coding and genomic sequences. Genetic diversity was evaluated by estimating the polymorphism information content (PIC), as well as the distribution and range of alleles sizes. Gene-based microsatellites proved to be less polymorphic than genomic microsatellites in terms of both number of alleles (6.0 vs. 9.2) and PIC values (0.446 vs. 0.594) while greater size differences between the largest and the smallest allele were observed for the genomic microsatellites than for the gene-based microsatellites (31.4 vs. 19.1 bp). Markers that showed a high number of alleles were identified with a maximum of 28 alleles for the marker BMd1. The microsatellites were useful for distinguishing Andean and Mesoamerican genotypes, for uncovering the races within each genepool and for separating wild accessions from cultivars. Greater polymorphism and race structure was found within the Andean gene pool than within the Mesoamerican gene pool and polymorphism rate between genotypes was consistent with genepool and race identity. Comparisons between Andean genotypes had higher polymorphism (53.0%) on average than comparisons among Mesoamerican genotypes (33.4%). Within the Mesoamerican parental combinations, the intra-racial combinations between Mesoamerica and Durango or Jalisco race genotypes showed higher average rates of polymorphism (37.5%) than the within-race combinations between Mesoamerica race genotypes (31.7%). In multiple correspondance analysis we found two principal clusters of genotypes corresponding to the Mesoamerican and Andean gene pools and subgroups representing specific races especially for the Nueva Granada and Peru races of the Andean gene pool. Intra population diversity was higher within the Andean genepool than within the Mesoamerican genepool and this pattern was observed for both gene-based and genomic microsatellites. Furthermore, intra-population diversity within the Andean races (0.356 on average) was higher than within the Mesoamerican races (0.302). Within the Andean gene pool, race Peru had higher diversity compared to race Nueva Granada, while within the Mesoamerican gene pool, the races Durango, Guatemala and Jalisco had comparable levels of diversity which were below that of race Mesoamerica.


Subject(s)
Phaseolus/genetics , Alleles , Crosses, Genetic , DNA, Plant/genetics , Genetic Variation , Genotype , Heterozygote , Microsatellite Repeats , Polymorphism, Genetic
9.
Radiat Prot Dosimetry ; 119(1-4): 450-3, 2006.
Article in English | MEDLINE | ID: mdl-16565207

ABSTRACT

Published single-aliquot regenerative-dose (SAR) procedures for quartz use a 'cutheat' different from the pre-heat. In contrast, previous work has shown that the SAR procedure can be used to correct for sensitivity changes exhibited by feldspars if the cutheat is equal to the pre-heat. In this paper, a procedure that corrects for sensitivity changes in both quartz and feldspar is tested. The results indicate that for sedimentary quartz the cutheat can be equal to the pre-heat. Thus, it may be possible to develop one procedure to measure equivalent doses in a polymineral sample. We also tested several different optical stimulation methods. Using the infrared (IR)-stimulated signal from a post-IR blue-stimulated optically stimulated luminescence sequence extends the potential age range when using feldpathic materials. In addition, since the post-IR blue-stimulated signal from feldspar is much smaller than the blue-stimulated signal from quartz, the possibility exists of extracting a 'quartz signal' from a mixed mineral sample.


Subject(s)
Algorithms , Aluminum Silicates/analysis , Aluminum Silicates/radiation effects , Geology/methods , Materials Testing/methods , Minerals/analysis , Minerals/radiation effects , Potassium Compounds/analysis , Potassium Compounds/radiation effects , Thermoluminescent Dosimetry/methods , Half-Life , Hot Temperature , Light
10.
Theor Appl Genet ; 112(5): 913-23, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16397789

ABSTRACT

The bean pod weevil (Apion godmani Wagner) is a serious insect pest of common beans (Phaseolus vulgaris L.) grown in Mexico and Central America that is best controlled by host-plant resistance available in Durango or Jalisco genotypes such as J-117. Given unreliable infestation by the insect, the use of marker-assisted selection is desirable. In the present study, we developed a set of nine molecular markers for Apion resistance and mapped them to loci on chromosomes 2, 3, 4 and 6 (linkage groups b01, b08, b07 and b11, respectively) based on genetic analysis of an F (5:10) susceptible x resistant recombinant inbred line population (Jamapa x J-117) and two reference mapping populations (DOR364 x G19833 and BAT93 x JaloEEP558) for which chromosome and linkage group designations are known. All the markers were derived from randomly amplified polymorphic DNA (RAPD) bands that were identified through bulked segregant analysis and cloned for conversion to sequence tagged site (STS) markers. One of the markers was dominant while four detected polymorphism upon digestion with restriction enzymes. The other markers were mapped as RAPD fragments. Phenotypic data for the population was based on the evaluation of percentage seed damage in replicated trials conducted over four seasons in Mexico. In single point regression analysis, individual markers explained from 3.5 to 22.5% of the variance for the resistance trait with the most significant markers overall being F10-500S, U1-1400R, R20-1200S, W9-1300S and Z4-800S, all markers that mapped to chromosome 2 (b01). Two additional significant markers, B1-1400R and W6-800R, were mapped to chromosome 6 (b11) and explained from 4.3 to 10.2% of variance depending on the season. The latter of these markers was a dominant STS marker that may find immediate utility in marker-assisted selection. The association of these two loci with the Agr and Agm genes is discussed as well as the possibility of additional resistance genes on chromosome 4 (b07) and chromosome 3 (b08). These are among the first specific markers developed for tagging insect resistance in common bean and are expected to be useful for evaluating the mechanism of resistance to A. godmani.


Subject(s)
Chromosome Mapping , Phaseolus , Weevils/pathogenicity , Animals , Central America , Crosses, Genetic , Female , Genetic Linkage , Genetic Markers , Mexico , Phaseolus/genetics , Phaseolus/parasitology , Polymorphism, Genetic , Random Amplified Polymorphic DNA Technique
11.
Theor Appl Genet ; 112(6): 1149-63, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16432734

ABSTRACT

Advanced backcross QTL analysis was used to identify quantitative trait loci (QTL) for agronomic performance in a population of BC2F(3:5) introgression lines created from the cross of a Colombian large red-seeded commercial cultivar, ICA Cerinza, and a wild common bean accession, G24404. A total of 157 lines were evaluated for phenological traits, plant architecture, seed weight, yield and yield components in replicated trials in three environments in Colombia and genotyped with microsatellite, SCAR, and phaseolin markers that were used to create a genetic map that covered all 11 linkage groups of the common bean genome with markers spaced at an average distance of every 10.4 cM. Segregation distortion was most significant in regions orthologous for a seed coat color locus (R-C) on linkage group b08 and two domestication syndrome genes, one on linkage group b01 at the determinacy (fin) locus and the other on linkage group b02 at the seed-shattering (st) locus. Composite interval mapping analysis identified a total of 41 significant QTL for the eight traits measured of which five for seed weight, two for days to flowering, and one for yield were consistent across two or more environments. QTL were located on every linkage group with b06 showing the greatest number of independent loci. A total of 13 QTL for plant height, yield and yield components along with a single QTL for seed size showed positive alleles from the wild parent while the remaining QTL showed positive alleles from the cultivated parent. Some QTL co-localized with regions that had previously been described to be important for these traits. Compensation was observed between greater pod and seed production and smaller seed size and may have resulted from QTL for these traits being linked or pleiotropic. Although wild beans have been used before to transfer biotic stress resistance traits, this study is the first to attempt to simultaneously obtain a higher yield potential from wild beans and to analyze this trait with single-copy markers. The wild accession was notable for being from a unique center of diversity and for contributing positive alleles for yield and other traits to the introgression lines showing the potential that advanced backcrossing has in common bean improvement.


Subject(s)
Crosses, Genetic , Genetic Linkage , Phaseolus/genetics , Phenotype , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Chromosome Mapping , Chromosomes, Plant , Genome, Plant , Phaseolus/growth & development
12.
Theor Appl Genet ; 107(8): 1362-74, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14504741

ABSTRACT

A total of 150 microsatellite markers developed for common bean ( Phaseolus vulgaris L.) were tested for parental polymorphism and used to determine the positions of 100 genetic loci on an integrated genetic map of the species. The value of these single-copy markers was evident in their ability to link two existing RFLP-based genetic maps with a base map developed for the Mesoamerican x Andean population, DOR364 x G19833. Two types of microsatellites were mapped, based respectively on gene-coding and anonymous genomic-sequences. Gene-based microsatellites proved to be less polymorphic (46.3%) than anonymous genomic microsatellites (64.3%) between the parents of two inter-genepool crosses. The majority of the microsatellites produced single bands and detected single loci, however four of the gene-based and three of the genomic microsatellites produced consistent double or multiple banding patterns and detected more than one locus. Microsatellite loci were found on each of the 11 chromosomes of common bean, the number per chromosome ranging from 5 to 17 with an average of ten microsatellites each. Total map length for the base map was 1,720 cM and the average chromosome length was 156.4 cM, with an average distance between microsatellite loci of 19.5 cM. The development of new microsatellites from sequences in the Genbank database and the implication of these results for genetic mapping, quantitative trait locus analysis and marker-assisted selection in common bean are described.


Subject(s)
Genome, Plant , Microsatellite Repeats/genetics , Phaseolus/genetics , Base Sequence , DNA Primers , Heterozygote , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length
13.
Genome ; 39(2): 373-8, 1996 Apr.
Article in English | MEDLINE | ID: mdl-8984005

ABSTRACT

An efficient technique for cloning DNA from silver-stained denaturing polyacrylamide gels was developed to allow the isolation of specific bands obtained from selective restriction fragment amplification (SRFA). This method proved as reliable as cloning radioactively labelled SRFA bands from the same gels. Rice DNA was used as a template, both with and without [32P]dCTP, using the same PCR profiles. Amplified products were separated using denaturing polyacryamide gel electrophoresis and visualized either by silver staining of gels or by autoradiography of 32P-labelled products. We cloned specific polymorphic SRFA bands directly from the denaturing polyacrylamide gels with one round of PCR amplification and confirmed that the sequences of the bands from silver-stained gels were identical to the corresponding 32P-labelled bands. The bands that were chosen represented amplified fragment length polymorphisms (AFLPs) between japonica and indica rice varieties. We studied the ability of two cloned AFLP bands to serve as heritable genetic markers by mapping them as RFLPs in an interspecific rice population and found that they represented single-copy DNA at unique loci in the rice genome.


Subject(s)
DNA, Plant/genetics , Oryza/genetics , Base Sequence , Chromosome Mapping , Cloning, Molecular , Coloring Agents , DNA Primers/genetics , Electrophoresis, Polyacrylamide Gel , Gene Amplification , Genetic Variation , Molecular Sequence Data , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Silver
SELECTION OF CITATIONS
SEARCH DETAIL
...