Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 14(14): 2671-2681, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29564433

ABSTRACT

Micro-magnets producing magnetic field gradients as high as 106 T m-1 have been used to efficiently trap nanoparticles with a magnetic core of just 12 nm in diameter. Particle capture efficiency increases with increasing particle concentration. Comparison of measured capture kinetics with numerical modelling reveals that a threshold concentration exists below which capture is diffusion-driven and above which it is convectively-driven. This comparison also shows that two-way fluid-particle coupling is responsible for the formation of convective cells, the size of which is governed by the height of the droplet. Our results indicate that for a suspension with a nanoparticle concentration suitable for bioassays (around 0.25 mg ml-1), all particles can be captured in less than 10 minutes. Since nanoparticles have a significantly higher surface-to-volume ratio than the more widely used microparticles, their efficient capture should contribute to the development of next generation digital microfluidic lab-on-chip immunoassays.

SELECTION OF CITATIONS
SEARCH DETAIL
...