Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Faraday Discuss ; 245(0): 138-163, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37394909

ABSTRACT

Much of what is known about chemistry in star-forming regions comes from observations of nearby (d < 500 pc) low-mass protostars. For chemistry in high-mass star-forming regions, several more distant (d ∼ 2-8 kpc), exceptionally bright molecular sources have also been the subjects of repeated observations but with concomitantly poorer linear spatial resolution. Facilities such as ALMA and JWST, however, now provide the means for observing distant sources at dramatically higher spatial resolution and sensitivity. We used the modest resolving power of the Atacama Compact Array, a dedicated subset of ALMA antennas, to carry out a pilot survey of 11 giant molecular clouds selected from the Bolocam Galactic Plane Survey [Battisti & Heyer, Astrophys. J., 2014, 780, 173] within the so-called molecular ring between about 4 and 8 kpc from the galactic center. Within our observed sample, molecular emission regions-most of which correspond to at least one (candidate) young stellar object-exhibit a range of chemical complexity and diversity. Furthermore, nine target giant molecular clouds contain well-fit methanol emission, giving us a first look at the spatial chemical variability within the objects at relatively high (compared to past observations) resolutions of ∼5''. This work lays the foundation for future high angular resolution studies of gas-phase chemistry with the full ALMA.

2.
Nat Commun ; 14(1): 1950, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37029146

ABSTRACT

Two-dimensional spectroscopic techniques combining terahertz (THz), infrared (IR), and visible pulses offer a wealth of information about coupling among vibrational modes in molecular liquids, thus providing a promising probe of their local structure. However, the capabilities of these spectroscopies are still largely unexplored due to experimental limitations and inherently weak nonlinear signals. Here, through a combination of equilibrium-nonequilibrium molecular dynamics (MD) and a tailored spectrum decomposition scheme, we identify a relationship between the tetrahedral order of liquid water and its two-dimensional IR-IR-Raman (IIR) spectrum. The structure-spectrum relationship can explain the temperature dependence of the spectral features corresponding to the anharmonic coupling between low-frequency intermolecular and high-frequency intramolecular vibrational modes of water. In light of these results, we propose new experiments and discuss the implications for the study of tetrahedrality of liquid water.

3.
Phys Rev Lett ; 129(20): 207401, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36461997

ABSTRACT

Two-dimensional terahertz-terahertz-Raman spectroscopy can provide insight into the anharmonicities of low-energy phonon modes-knowledge of which can help develop strategies for coherent control of material properties. Measurements on LiNbO_{3} reveal THz and Raman nonlinear transitions between the E(TO_{1}) and E(TO_{3}) phonon polaritons. Distinct coherence pathways are observed with different THz polarizations. The observed pathways suggest that the origin of the third-order nonlinear responses is due to mechanical anharmonicities, as opposed to electronic anharmonicities. Further, we confirm that the E(TO_{1}) and E(TO_{3}) phonon polaritons are excited through resonant one-photon THz excitation.

4.
J Phys Chem A ; 126(37): 6473-6482, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36000316

ABSTRACT

The relative abundances of singly deuterated methanol isotopologues, [CH2DOH]/[CH3OD], in star-forming regions deviate from the statistically expected ratio of 3. In Orion KL, the nearest high-mass star-forming region to Earth, the singly deuterated methanol ratio is about 1, and the cause for this observation has been explored through theory for nearly three decades. We present high-angular resolution observations of Orion KL using the Atacama Large Millimeter/submillimeter Array to map small-scale changes in CH3OD column density across the nebula, which provide a new avenue to examine the deuterium chemistry during star and planet formation. By considering how CH3OD column densities vary with temperature, we find evidence of chemical processes that can significantly alter the observed gas-phase column densities. The astronomical data are compared with existing theoretical work and support D-H exchange between CH3OH and heavy water (i.e., HDO and D2O) at methanol's hydroxyl site in the icy mantles of dust grains. The enhanced CH3OD column densities are localized to the Hot Core-SW region, a pattern that may be linked to the coupled evolution of ice mantle chemistry and star formation in giant molecular clouds. This work provides new perspectives on deuterated methanol chemistry in Orion KL and informs considerations that may guide future theoretical, experimental, and observational work.

5.
J Chem Phys ; 156(13): 131102, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35395895

ABSTRACT

Two-dimensional Raman and hybrid terahertz-Raman spectroscopic techniques provide invaluable insight into molecular structures and dynamics of condensed-phase systems. However, corroborating experimental results with theory is difficult due to the high computational cost of incorporating quantum-mechanical effects in the simulations. Here, we present the equilibrium-nonequilibrium ring-polymer molecular dynamics (RPMD), a practical computational method that can account for nuclear quantum effects on the two-time response function of nonlinear optical spectroscopy. Unlike a recently developed approach based on the double Kubo transformed (DKT) correlation function, our method is exact in the classical limit, where it reduces to the established equilibrium-nonequilibrium classical molecular dynamics method. Using benchmark model calculations, we demonstrate the advantages of the equilibrium-nonequilibrium RPMD over classical and DKT-based approaches. Importantly, its derivation, which is based on the nonequilibrium RPMD, obviates the need for identifying an appropriate Kubo transformed correlation function and paves the way for applying real-time path-integral techniques to multidimensional spectroscopy.

6.
J Phys Chem B ; 124(40): 8904-8908, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32897705

ABSTRACT

We demonstrate that halogenated methane (HM) two-dimensional (2D)-terahertz-terahertz-Raman (2D-TTR) spectra are determined by the complicated structure of the instrument response function (IRF) along ω1 and by the molecular coherences along ω2. Experimental improvements have helped increase the resolution and dynamic range of the measurements, including accurate THz pulse shape characterization. Sum-frequency excitations convolved with the IRF are found to quantitatively reproduce the 2D-TTR signal. A new reduced density matrix model that incorporates sum-frequency pathways, with linear and harmonic operators, fully supports this (re)interpretation of the 2D-TTR spectra.

7.
J Phys Chem A ; 123(33): 7278-7287, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31329439

ABSTRACT

Nonlinear THz-THz-Raman (TTR) liquid spectroscopy offers new possibilities for studying and understanding condensed-phase chemical dynamics. Although TTR spectra carry rich information about the systems under study, the response is encoded in a three-point correlation function comprising of both dipole and polarizability elements. Theoretical methods are necessary for the interpretation of the experimental results. In this work, we study the liquid-phase dynamics of bromoform, a polarizable molecule with a strong TTR response. Previous work based on reduced density matrix (RDM) simulations suggests that unusually large multiquanta dipole matrix elements are needed to understand the measured spectrum of bromoform. Here, we demonstrate that a self-consistent definition of the time coordinates with respect to the reference pulse leads to a simplified experimental spectrum. Furthermore, we analytically derive a parametrization for the RDM model by integrating the dipole and polarizability elements to the 4th order in the normal modes, and we enforce inversion symmetry in the calculations by numerically canceling the components of the response that are even with respect to the field. The resulting analysis eliminates the need to invoke large multiquanta dipole matrix elements to fit the experimental spectrum; instead, the experimental spectrum is recovered using RDM simulations with dipole matrix parameters that are in agreement with independent ab initio calculations. The fundamental interpretation of the TTR signatures in terms of coupled intramolecular vibrational modes remains unchanged from the previous work.

8.
Rev Sci Instrum ; 90(5): 053107, 2019 May.
Article in English | MEDLINE | ID: mdl-31153227

ABSTRACT

We report on the design and performance of an echelon-based single shot visible/near-infrared spectrometer with adequate sensitivity to measure the nonlinear optical and terahertz Kerr effects in neat molecular liquids at room temperature. Useful molecular information spanning tens of picoseconds can be measured in just a few milliseconds, and the signal-to-noise performance scales favorably with respect to the standard stage scan technique. These results demonstrate the viability of stage-free nonlinear Kerr effect measurements and provide a route for improvements to the speed of future multidimensional Kerr effect studies.

9.
Opt Lett ; 43(21): 5271-5274, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30382985

ABSTRACT

Optical sectioning has become an indispensable technique for high-speed volumetric imaging in the past decade. Here we present a novel optical-sectioning method that produces a thin plane of illumination by exploiting the spatial and temporal properties of multiphoton excitation. Critically, the illumination and detection share the same optical path, as in a conventional epi-fluorescence microscope configuration. Therefore, the imaged sample can be prepared as for standard fluorescence microscopy. Our method also leads to a laterally structured illumination pattern, and this feature can be utilized in structured illumination microscopy to further enhance the imaging performance. We show an example of such an approach, which achieves axial resolution finer than confocal microscopy. We also demonstrate the potential of the new method for biological applications by performing three-dimensional imaging of living Caenorhabditis elegans.

10.
Sci Rep ; 8(1): 14863, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30291275

ABSTRACT

High-degree time-multiplexed multifocal multiphoton microscopy was expected to provide a facile path to scanningless optical-sectioning and the fast imaging of dynamic three-dimensional biological systems. However, physical constraints on typical time multiplexing devices, arising from diffraction in the free-space propagation of light waves, lead to significant manufacturing difficulties and have prevented the experimental realization of high-degree time multiplexing. To resolve this issue, we have developed a novel method using optical fiber bundles of various lengths to confine the diffraction of propagating light waves and to create a time multiplexing effect. Through this method, we experimentally demonstrate the highest degree of time multiplexing ever achieved in multifocal multiphoton microscopy (~50 times larger than conventional approaches), and hence the potential of using simply-manufactured devices for scanningless optical sectioning of biological systems.

11.
Astrophys J Lett ; 868(1)2018.
Article in English | MEDLINE | ID: mdl-30778373

ABSTRACT

Sulfur has been observed to be severely depleted in dense clouds leading to uncertainty in the molecules that contain it and the chemistry behind their evolution. Here, we aim to shed light on the sulfur chemistry in young stellar objects (YSOs) by using high-resolution infrared spectroscopy of absorption by the ν 3 rovibrational band of SO2 obtained with the Echelon-Cross-Echelle Spectrograph on the Stratospheric Observatory for Infrared Astronomy. Using local thermodynamic equilibrium models we derive physical parameters for the SO2 gas in the massive YSO MonR2 IRS3. This yields a SO2/H abundance lower limit of 5.6 ± 0.5 × 10-7, or >4% of the cosmic sulfur budget, and an intrinsic line width (Doppler parameter) of b < 3.20 km s-1. The small line widths and high temperature (T ex = 234 ± 15 K) locate the gas in a relatively quiescent region near the YSO, presumably in the hot core where ices have evaporated. This sublimation unlocks a volatile sulfur reservoir (e.g., sulfur allotropes as detected abundantly in comet 67P/Churyumov-Gerasimenko), which is followed by SO2 formation by warm, dense gas-phase chemistry. The narrowness of the lines makes formation of SO2 from sulfur sputtered off grains in shocks less likely toward MonR2 IRS3.

12.
J Phys Chem Lett ; 8(18): 4640-4644, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28876957

ABSTRACT

Fundamental properties of molecular liquids are governed by long-range interactions that most prominently manifest at terahertz (THz) frequencies. Here we report the detection of nonlinear THz photon-echo (rephasing) signals in liquid bromoform using THz-THz-Raman spectroscopy. Together, the many observed signatures span frequencies from 0.5 to 8.5 THz and result from couplings between thermally populated ladders of vibrational states. The strongest peaks in the spectrum are found to be multiquantum dipole and 1-quantum polarizability transitions and may arise from nonlinearities in the intramolecular dipole moment surface driven by intermolecular interactions.

13.
J Opt Soc Am B ; 34(1): 104-129, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28630530

ABSTRACT

Broadband spectroscopy is an invaluable tool for measuring multiple gas-phase species simultaneously. In this work we review basic techniques, implementations, and current applications for broadband spectroscopy. We discuss components of broad-band spectroscopy including light sources, absorption cells, and detection methods and then discuss specific combinations of these components in commonly-used techniques. We finish this review by discussing potential future advances in techniques and applications of broad-band spectroscopy.

14.
Phys Chem Chem Phys ; 19(1): 568-573, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27918034

ABSTRACT

The molecular complex between iso-propanol and water has been investigated by Fourier transform microwave spectroscopy. Two distinct rotational spectra have been assigned, corresponding to two different isomers of the adduct. In both cases the water molecule acts as a proton donor to the alcoholic oxygen atom of iso-propanol in its gauche arrangement. The isomer in which the water molecule is oriented along the symmetry plane of the iso-propanol molecule (inner) is more stable than the second isomer, where the water is positioned outside the iso-propanol symmetry plane (outer). The rotational transitions of the inner isomer display a doubling, due to the two equivalent minima related to the internal rotation of the hydroxyl group (concerted with a rearrangement of the water unit). The tunneling splitting has been determined to be 25.16(8) GHz, corresponding to a B2 barrier of ∼440 cm-1.

15.
Phys Chem Chem Phys ; 18(32): 22565-72, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27472828

ABSTRACT

Previous theoretical work on the ethanol-methanol dimer has been inconclusive in predicting the preferred hydrogen bond donor/acceptor configuration. Here, we report the microwave spectrum of the dimer using a chirped pulse Fourier transform microwave spectrometer from 8-18 GHz. In an argon-backed expansion, 50 transitions have been assigned to a trans-ethanol-acceptor/methanol-donor structure that is likely stabilized by a secondary weak C-HO hydrogen bond. A higher energy conformer was observed in a helium-backed expansion and tentatively assigned to a gauche-ethanol-acceptor/methanol-donor structure. No ethanol-donor/methanol-acceptor dimers have been found, suggesting such interactions are energetically disfavored. A preliminary analysis of the A-E splitting due to the internal rotation of the methanol methyl group in the ground state species is also presented. We find evidence of the Ubbelohde effect in the measured A-E splittings of three deuterated isotopologues and the normal species of this conformer.

16.
Science ; 352(6292): 1449-52, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27303055

ABSTRACT

Life on Earth relies on chiral molecules-that is, species not superimposable on their mirror images. This manifests itself in the selection of a single molecular handedness, or homochirality, across the biosphere. We present the astronomical detection of a chiral molecule, propylene oxide (CH3CHCH2O), in absorption toward the Galactic center. Propylene oxide is detected in the gas phase in a cold, extended molecular shell around the embedded, massive protostellar clusters in the Sagittarius B2 star-forming region. This material is representative of the earliest stage of solar system evolution in which a chiral molecule has been found.

17.
Phys Chem Chem Phys ; 18(30): 20199-207, 2016 Jul 27.
Article in English | MEDLINE | ID: mdl-27306081

ABSTRACT

The icy mantles of interstellar dust grains are the birthplaces of the primordial prebiotic molecular inventory that may eventually seed nascent solar systems and the planets and planetesimals that form therein. Here, we present a study of two of the most abundant species in these ices after water: carbon dioxide (CO2) and methanol (CH3OH), using TeraHertz (THz) time-domain spectroscopy and mid-infrared spectroscopy. We study pure and mixed-ices of these species, and demonstrate the power of the THz region of the spectrum to elucidate the long-range structure (i.e. crystalline versus amorphous) of the ice, the degree of segregation of these species within the ice, and the thermal history of the species within the ice. Finally, we comment on the utility of the THz transitions arising from these ices for use in astronomical observations of interstellar ices.

18.
Proc Natl Acad Sci U S A ; 113(25): 6857-61, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27274067

ABSTRACT

We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes.

19.
J Chem Phys ; 143(23): 234204, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26696055

ABSTRACT

We report the first coherent excitation of intramolecular vibrational modes via the nonlinear interaction of a TeraHertz (THz) light field with molecular liquids. A terahertz-terahertz-Raman pulse sequence prepares the coherences with a broadband, high-energy, (sub)picosecond terahertz pulse, that are then measured in a terahertz Kerr effect spectrometer via phase-sensitive, heterodyne detection with an optical pulse. The spectrometer reported here has broader terahertz frequency coverage, and an increased sensitivity relative to previously reported terahertz Kerr effect experiments. Vibrational coherences are observed in liquid diiodomethane at 3.66 THz (122 cm(-1)), and in carbon tetrachloride at 6.50 THz (217 cm(-1)), in exact agreement with literature values of those intramolecular modes. This work opens the door to 2D spectroscopies, nonlinear in terahertz field, that can study the dynamics of condensed-phase molecular systems, as well as coherent control at terahertz frequencies.

20.
Rev Sci Instrum ; 86(10): 103107, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26520940

ABSTRACT

We present the design and capabilities of a high-resolution, decade-spanning ASynchronous OPtical Sampling (ASOPS)-based TeraHertz Time-Domain Spectroscopy (THz-TDS) instrument. Our system employs dual mode-locked femtosecond Ti:Sapphire oscillators with repetition rates offset locked at 100 Hz via a Phase-Locked Loop (PLL) operating at the 60th harmonic of the ∼80 MHz oscillator repetition rates. The respective time delays of the individual laser pulses are scanned across a 12.5 ns window in a laboratory scan time of 10 ms, supporting a time delay resolution as fine as 15.6 fs. The repetition rate of the pump oscillator is synchronized to a Rb frequency standard via a PLL operating at the 12th harmonic of the oscillator repetition rate, achieving milliHertz (mHz) stability. We characterize the timing jitter of the system using an air-spaced etalon, an optical cross correlator, and the phase noise spectrum of the PLL. Spectroscopic applications of ASOPS-THz-TDS are demonstrated by measuring water vapor absorption lines from 0.55 to 3.35 THz and acetonitrile absorption lines from 0.13 to 1.39 THz in a short pathlength gas cell. With 70 min of data acquisition, a 50 dB signal-to-noise ratio is achieved. The achieved root-mean-square deviation is 14.6 MHz, with a mean deviation of 11.6 MHz, for the measured water line center frequencies as compared to the JPL molecular spectroscopy database. Further, with the same instrument and data acquisition hardware, we use the ability to control the repetition rate of the pump oscillator to enable THz frequency comb spectroscopy (THz-FCS). Here, a frequency comb with a tooth width of 5 MHz is generated and used to fully resolve the pure rotational spectrum of acetonitrile with Doppler-limited precision. The oscillator repetition rate stability achieved by our PLL lock circuits enables sub-MHz tooth width generation, if desired. This instrument provides unprecedented decade-spanning, tunable resolution, from 80 MHz down to sub-MHz, and heralds a new generation of gas-phase spectroscopic tools in the THz region.

SELECTION OF CITATIONS
SEARCH DETAIL
...