Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Anim Health Prod ; 44(6): 1143-50, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22193940

ABSTRACT

Market information was combined with predicted input-output relationships in an economic analysis of alternative nutritional management for dual-purpose member herds of the Genesis farmer organization of central coastal Veracruz, Mexico. Cow productivity outcomes for typical management and alternative feeding scenarios were obtained from structured sets of simulations in a companion study of productivity limitations and potentials using the Cornell Net Carbohydrate and Protein System model (Version 6.0). Partial budgeting methods and sensitivity analysis were used to identify economically viable alternatives based on expected change in milk income over feed cost (change in revenues from milk sales less change in feed costs). Herd owners in coastal Veracruz have large economic incentives, from $584 to $1,131 in predicted net margin, to increase milk sales by up to 74% across a three-lactation cow lifetime by improving diets based on good quality grass and legume forages. This increment is equal to, or exceeds, in value the total yield from at least one additional lactation per cow lifetime. Furthermore, marginal rates of return (change in milk income over feed costs divided by change in variable costs when alternative practices are used) of 3.3 ± 0.8 indicate clear economic incentives to remove fundamental productivity vulnerabilities due to chronic energy deficits and impeded growth of immature cows under typical management. Sensitivity analyses indicate that the economic outcomes are robust for a variety of market conditions.


Subject(s)
Animal Husbandry/economics , Animal Nutritional Physiological Phenomena , Dairying/economics , Diet/veterinary , Milk/economics , Models, Economic , Animal Feed/analysis , Animal Husbandry/methods , Animals , Cattle , Computer Simulation , Dairying/methods , Female , Mexico , Tropical Climate
2.
Trop Anim Health Prod ; 44(6): 1131-42, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22201012

ABSTRACT

Feed chemical and kinetic composition and animal performance information was used to evaluate productivity limitations and potentials of dual-purpose member herds of the Genesis farmer organization of central coastal Veracruz, Mexico. The Cornell Net Carbohydrate and Protein System model (Version 6.0) was systematically applied to specific groups of cows in structured simulations to establish probable input-output relationships for typical management, and to estimate probable outcomes from alternative management based on forage-based dietary improvements. Key herd vulnerabilities were pinpointed: chronic energy deficits among dry cows of all ages in late gestation and impeded growth for immature cows. Regardless of the forage season of calving, most cows, if not all, incur energy deficits in the final trimester of gestation; thus reducing the pool of tissue energy and constraining milking performance. Under typical management, cows are smaller and underweight for their age, which limits feed intake capacity, milk production and the probability of early postpartum return to ovarian cyclicity. The substitution of good-quality harvested forage for grazing increased predicted yields by about one-third over typical scenarios for underweight cows. When diets from first parturition properly supported growth and tissue repletion, milk production in second and third lactations was predicted to improve about 60%. Judiciously supplemented diets based on good quality grass and legume forages from first calving were predicted to further increase productivity by about 80% across a three-lactation cow lifetime. These dual-purpose herd owners have large incentives to increase sales income by implementing nutritional strategies like those considered in this study.


Subject(s)
Animal Husbandry/methods , Animal Nutritional Physiological Phenomena , Cattle/growth & development , Dairying/methods , Diet/veterinary , Energy Metabolism/physiology , Animal Feed/analysis , Animals , Female , Mexico , Pregnancy , Tropical Climate
4.
J Exp Biol ; 210(Pt 17): 2979-89, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17704073

ABSTRACT

Synodontis nigriventris is a surface-feeding facultative air-breather that swims inverted with its zoological ventral side towards the water surface. Their near-surface drag is about double the deeply submerged drag (due to wave drag) and roughly twice the sum of frictional and pressure drags. For streamlined technical bodies, values of wave drag augmentation near the surface may be five times the deeply submerged values. However, the depth dependence of drag is similar for fish and streamlined technical bodies, with augmentation vanishing at about 3 body diameters below the surface. Drag ;inverted' is approximately 15% less than that ;dorsal side up' near the surface. Consistent with this, at any given velocity, tailbeat frequency is lower and stride length higher for inverted swimming in surface proximity (P<0.05). Deeply submerged, there are no significant differences in drag and kinematics between postures (P>0.05). At the critical Froude number of 0.45, speeds in surface proximity correspond to prolonged swimming that ends in fatigue. To exceed these speeds, the fish must swim deeply submerged and this behaviour is observed. Inverted swimming facilitates efficient air breathing. Drag dorsal side up during aquatic surface respiration is 1.5 times the value for the inverted posture. Fast-starts are rectilinear, directly away from the stimulus. Average and maximum velocity and acceleration decrease in surface proximity (P<0.05) and are higher inverted (maximum acceleration: 20-30 m s(-2); P<0.05) and comparable to locomotor generalists (e.g. trout). Mechanical energy losses due to wave generation are about 20% for inverted and 40% for dorsal side up, and lower than for trout fast-starting in shallow water (70% losses); bottom effects and large amplitude C-starts (c.f. relatively low amplitude rectilinear motions in S. nigriventris) enhance resistance in trout. S. nigriventris probably evolved from a diurnal or crepuscular 'Chiloglanis-like' benthic ancestor. Nocturnality and reverse countershading likely co-evolved with the inverted habit. Presumably, the increased energy cost of surface swimming is offset by exploiting the air-water interface for food and/or air breathing.


Subject(s)
Catfishes/physiology , Swimming/physiology , Animals , Biomechanical Phenomena , Catfishes/anatomy & histology , Energy Metabolism , Feeding Behavior , Water Movements
5.
Zoology (Jena) ; 109(1): 43-53, 2006.
Article in English | MEDLINE | ID: mdl-16403613

ABSTRACT

In locomotion that involves repetitive motion of propulsive structures (arms, legs, fins, wings) there are resonant frequencies f(*) at which the energy consumption is a minimum. As animals need to change their speed, they can maintain this energy minimum by tuning their body resonances. We discuss the physical principles of frequency tuning, and how it relates to forces, damping, and oscillation amplitude. The resonant frequency of pendulum-type oscillators (e.g. swinging arms and legs) may be changed by varying the mass moment of inertia, or the vertical acceleration of the pendulum pivot. The frequency of elastic vibrations (e.g. the bell of a jellyfish) can be tuned with a non-linear modulus of elasticity: soft for low deflection amplitudes (low resonant frequency), and stiff for large displacements (high resonant frequency). Tuning of elastic oscillations can also be achieved by changing the effective length or cross-sectional area of the elastic members, or by allowing springs in parallel or in series to become active. We propose that swimming and flying animals generate oscillating propulsive forces from precisely placed shed vortices and that these tuned motions can only occur when vortex shedding and the simple harmonic motion of the elastic elements of the propulsive structures are in resonance.


Subject(s)
Extremities/physiology , Locomotion/physiology , Animals , Biomechanical Phenomena , Flight, Animal/physiology , Models, Biological , Swimming/physiology
6.
J Exp Biol ; 208(Pt 20): 3819-34, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16215211

ABSTRACT

Hydromedusan jellyfish swim by rhythmic pulsation of their mesogleal bells. A single swimming muscle contracts to create thrust by ejecting water from the subumbrellar cavity. At the end of the contraction, energy stored in the deformation of the mesogleal bell powers the refilling stage, during which water is sucked back into the subumbrellar cavity. The mesoglea is a mucopolysaccharide gel reinforced with radially oriented fibres made primarily of a protein homologous to mammalian fibrillin. Most of the energy required to power the refill stroke is thought to be stored by stretching these fibres. The elastic modulus of similar fibrillin-rich fibres has been measured in other systems and found to be in the range of 0.2 to 1.1 MPa. In this paper, we measured the diameters of the fibres, their density throughout the bell, and the mechanical behaviour of the mesoglea, both in isolated samples and in an intact bell preparation. Using this information, we calculated the stiffness of the fibres of the hydromedusa Polyorchis penicillatus, which we found to be approximately 0.9 MPa, similar in magnitude to other species. This value is two orders of magnitude more compliant than the stiffness of the component fibrillin microfibrils previously reported. We show that the structure of the radial fibres can be modelled as a parallel fibre-reinforced composite and reconcile the stiffness difference by reinterpreting the previously reported data. We separate the contributions to the bell elasticity of the fibres and mesogleal matrix and calculate the energy storage capacity of the fibres using the calculated value of their stiffness and measured densities and diameters. We conclude that there is enough energy potential in the fibres alone to account for the energy required to refill the subumbrellar cavity.


Subject(s)
Hydrozoa/physiology , Microfilament Proteins/physiology , Animals , Elasticity , Fibrillins , Hydrozoa/anatomy & histology
7.
Zoology (Jena) ; 105(2): 165-74, 2002.
Article in English | MEDLINE | ID: mdl-16351865

ABSTRACT

Humans and other animals can temporarily store mechanical energy in elastic oscillations, f(el), of body parts and in pendulum oscillations, f(p) = const sq.rt (g/L), of legs, length L, or other appendages, and thereby reduce the energy consumption of locomotion. However, energy saving only occurs if these oscillations are tuned to the leg propagation frequency f. It has long been known that f is tuned to the pendulum frequency of the free-swinging leg of walkers. During running the leg frequency increases to some new value f = f(r). We propose that in order to maintain resonance the animal, mass M, actively increases its leg pendulum frequency to the new value f(p,r) =const sq.rt (a(y)/L)=f(r), by giving its hips a vertical acceleration a(y)= F(y)/M. The pendulum frequency is increased if the impact force F(y) of the stance foot is larger than Mg, explaining the observation by Alexander and Bennet-Clark (1976) that F(v) becomes larger than Mg when animals start to run. Our model predictions of the running velocity U(r) as function of L, F(v), are in agreement with measurements of these quantities (Farley et al. 1993). The leg's longitudinal elastic oscillation frequency scales as f(el) = const sq.rt (k/M). Experiments by Ferris et al., (1998) show that runners adjust their leg's stiffness, k, when running on surfaces of different elasticity so that the total stiffness k remains constant. Our analysis of their data suggests that the longitudinal oscillations of the stance leg are indeed kept in tune with the running frequency. Therefore we conclude that humans, and by extension all animals, maintain resonance during running. Our model also predicts the Froude number of walking-running transitions, Fr = U(2)/gL approximately 0.5 in good agreement with measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...