Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044655

ABSTRACT

Climate change is rapidly altering natural habitats and generating complex patterns of environmental stress. Ferns are major components of many forest understories and, given their independent gametophyte generation, may experience unique pressures in emerging temperature and drought regimes. Polyploidy is widespread in ferns and may provide a selective advantage in these rapidly changing environments. This work aimed to understand whether the gametophytes of allopolyploid ferns respond differently to climate-related physiological stress than their diploid parents. The experimental approach involved a multifactorial design with 27 treatment combinations including exposure to multiple levels of drought and temperature over three treatment durations, with recovery measured at multiple timepoints. We measured Chl fluorescence from over 2000 gametophytes to evaluate stress avoidance and tolerance in diploid and polyploid species. Polyploids generally showed a greater ability to avoid and/or tolerate a range of stress conditions compared with their diploid counterparts, suggesting that polyploidy may confer enhanced flexibility and resilience under climate stress. Overall, these results suggest that polyploidy may provide some resilience to climate change in mixed ploidy populations. However, all species remain susceptible to the impacts of extreme drought and heat stress.

2.
Am J Bot ; 109(8): 1313-1325, 2022 08.
Article in English | MEDLINE | ID: mdl-35862812

ABSTRACT

PREMISE: Antheridiogen systems are a set of pheromonal mechanisms that control sex expression in fern gametophytes. However, antheridiogen has rarely been studied outside of the laboratory, and little is known about its function in natural settings. Combining predictions based on field and laboratory study, we tested whether the sexual structure of gametophytic colonies of a tree fern were attributable to antheridiogen. METHODS: Gametophytic colonies of the antheridiogen-producing tree fern Cyathea multiflora were collected at La Selva Biological Station in Costa Rica in January 2019. The sex of each gametophyte was determined, mapped, and spatial statistic approaches were used to examine the distribution of sex in each colony. RESULTS: In all gametophytic colonies, males were most common, representing 62-68% of individuals. No hermaphroditic gametophytes were identified in any colony. A quadrat-based method showed female gametophytes were not clustered in each colony, while male gametophytes were clustered. In two of the colonies, the K(r) test statistic for males was greater than expected compared to random simulations of sex expression, indicating male sex expression was spatially associated with females. CONCLUSIONS: This study provides the first documentation of spatial sex expression in natural settings of gametophytes of an antheridiogen-producing tree fern species. The profound impact of antheridiogen on gametophytic sex expression in field settings suggests this system is intimately tied to mating system, fitness, and genetic diversity in Cyathea multiflora.


Subject(s)
Ferns , Germ Cells, Plant , Costa Rica , Ferns/genetics , Pheromones , Reproduction
3.
Am J Bot ; 107(2): 339-349, 2020 02.
Article in English | MEDLINE | ID: mdl-32086802

ABSTRACT

PREMISE: Plant sex is usually fixed, but in rare cases, sex expression is flexible and may be influenced by environmental factors. Theory links female sex expression to better health, but manipulative work involving the experimental change of health via injury is limited, particularly in sexually plastic species. A better understanding of mechanisms influencing shifts in sex is essential to our understanding of life history theory regarding trade-offs in sex allocation and differential mortality. METHODS: We investigated the relationship between physiological stress and sex expression in sexually plastic striped maple trees (Acer pensylvanicum) by inflicting damage of various intensities (crown pruning, defoliation, and hydraulic restriction). We then monitored the sex expression of injured and control individuals for 2 years to assess the extent to which injury may cue changes in sex expression. RESULTS: We found that severe damage such as full defoliation or severe pruning increased odds of changing sex to female and decreased odds of changing to male. In fact, no pruned male trees flowered male 2 years later, while all males in the control group flowered partially or fully male. After full defoliation, trees had 4.5 times higher odds of flowering female. Not all injury is equal; less-severe physical trauma did not affect the frequency of sex change to femaleness. CONCLUSIONS: This work demonstrates that physical trauma in striped maple appears to exhibit a threshold effect in which only the most stressful of physiological cues instigate changes in sex expression, a phenomenon previously unknown, and that damage stress is strongly correlated with switching to femaleness. These findings have implications for population sex ratios and sustainability within an increasing stressful climate regime.


Subject(s)
Acer , Trees , Climate , Female , Flowers , Reproduction
4.
Am J Bot ; 107(2): 375-382, 2020 02.
Article in English | MEDLINE | ID: mdl-32080831

ABSTRACT

PREMISE: Environmental sex determination (ESD) is a rare sex determination system in which individuals may switch sex expression throughout their lifetimes in response to environmental factors. In sexually stable species, individuals usually bear more female flowers if the plants are larger, have greater access to limiting resources, or are in better condition. Research regarding sexually plastic species with ESD and how resources correlate with sex expression is limited. Furthermore, most research investigates resources at the population level, failing to account for resources available to individuals for growth, maintenance, or reproduction. METHODS: Acer pensylvanicum is a species that is known to switch sex. Using twig samples collected during 2014-2016 in December and May, we analyzed resource status in the form of stored nonstructural carbohydrates (NSCs) and compared this with expressed sex. RESULTS: We found that females had higher sugar concentrations than males. Furthermore, males changing expression to female had higher sugar concentrations during the prior winter than did males remaining male. We found that size was not a key predictor: neither male nor female-flowering individuals increased NSC concentrations with size. Dying female trees had high concentrations of NSCs throughout the dying process and only manifested reduced NSCs once dead. CONCLUSIONS: This is the first study showing significant correlations between NSCs and sex expression in a plant species with ESD. These findings support the hypothesis that sex switching could be a consequence of increased resource availability and that the high female mortality of A. pensylvanicum populations is likely not a direct result of carbon starvation.


Subject(s)
Sugars , Trees , Carbohydrates , Plastics , Reproduction
5.
Ann Bot ; 124(3): 367-377, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31009535

ABSTRACT

BACKGROUND AND AIMS: The ability of individuals to change sex during their lifetime is known as environmental sex determination (ESD). This represents a unique life history trait, allowing plants to allocate resources differentially to male and female functions across lifetimes, potentially maximizing fitness in response to changing environmental or internal cues. In this study, Acer pensylvanicum, a species with an unconfirmed sex determination system, was investigated to see what patterns in sex expression existed across multiple years, if there were sex-based differences in growth and mortality, and whether this species conformed to theoretical predictions that females are larger and in better condition. METHODS: Patterns of sex expression were documented over 4 years in a phenotypically subdioecious A. pensylvanicum population located in New Jersey, USA, and data on size, mortality, health and growth were collected. A machine-learning algorithm known as a boosted classification tree was used to develop a model to predict the sex of a tree based on its condition, size and previous sex. RESULTS: In this study, 54 % of the trees switched sex expression during a 4-year period, with 26 % of those trees switching sex at least twice. Consistently monoecious trees could change relative sex expression by as much as 95 %. Both size and condition were influential in predicting sex, with condition exerting three times more relative influence than size on expressed sex. Contrary to theoretical predictions, the model showed that full female sex expression did not increase with size. Healthy trees were more likely to be male; predicted female sex expression increased with deteriorating health. Growth rate negatively correlated with multiple years of female sex expression. Populations maintained similar male-skewed sex ratios across years and locations and may result from differential mortality: 75 % of dead trees flowered female immediately before death. CONCLUSIONS: This study shows conclusively that A. pensylvanicum exhibits ESD and that femaleness correlates with decreased health, in contrast to prevailing theory. The mortality findings advance our understanding of puzzling non-equilibrium sex ratios and life history trade-offs resulting from male and female sex expression.


Subject(s)
Reproduction , Trees , Flowers , New Jersey
SELECTION OF CITATIONS
SEARCH DETAIL
...