Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Inorg Chem ; 24(6): 919-926, 2019 09.
Article in English | MEDLINE | ID: mdl-31342141

ABSTRACT

In order to shed light on metal-dependent mechanisms for O-O bond cleavage, and its microscopic reverse, we compare herein the electronic and geometric structures of O2-derived binuclear Co(III)- and Mn(III)-peroxo compounds. Binuclear metal peroxo complexes are proposed to form as intermediates during Mn-promoted photosynthetic H2O oxidation, and a Co-containing artificial leaf inspired by nature's photosynthetic H2O oxidation catalyst. Crystallographic characterization of an extremely activated peroxo is made possible by working with substitution-inert, low-spin Co(III). Density functional theory (DFT) calculations show that the frontier orbitals of the Co(III)-peroxo compound differ noticeably from the analogous Mn(III)-peroxo compound. The highest occupied molecular orbital (HOMO) associated with the Co(III)-peroxo is more localized on the peroxo in an antibonding π*(O-O) orbital, whereas the HOMO of the structurally analogous Mn(III)-peroxo is delocalized over both the metal d-orbitals and peroxo π*(O-O) orbital. With low-spin d6 Co(III), filled t2g orbitals prevent π-back-donation from the doubly occupied antibonding π*(O-O) orbital onto the metal ion. This is not the case with high-spin d4 Mn(III), since these orbitals are half-filled. This weakens the peroxo O-O bond of the former relative to the latter.


Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Crystallography , Manganese/chemistry , Models, Molecular , Oxygen/chemistry
2.
J Am Chem Soc ; 141(5): 1867-1870, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30661357

ABSTRACT

Herein, we describe an alkyl thiolate-ligated iron complex that reacts with dioxygen to form an unprecedented example of an iron superoxo (O2•-) intermediate, [FeIII(S2Me2N3(Pr,Pr))(O2)] (4), which is capable of cleaving strong C-H bonds. A cysteinate-ligated iron superoxo intermediate is proposed to play a key role in the biosynthesis of ß-lactam antibiotics by isopenicillin N-synthase (IPNS). Superoxo 4 converts to a metastable putative Fe(III)-OOH intermediate, at rates that are dependent on the C-H bond strength of the H atom donor, with a kinetic isotope effect ( kH/ kD = 4.8) comparable to that of IPNS ( kH/ kD = 5.6). The bond dissociation energy of the C-H bonds cleaved by 4 (92 kcal/mol) is comparable to C-H bonds cleaved by IPNS (93 kcal/mol). Both the calculated and experimental electronic absorption spectra of 4 are comparable to those of the putative IPNS superoxo intermediate, and are shown to involve RS- → Fe-O2•- and O2•- → Fe charge transfer transitions. The π-back-donation by the electron-rich alkyl thiolate presumably facilitates this reactivity by increasing the basicity of the distal oxygen. The frontier orbitals of 4 are shown to consist of two strongly coupled unpaired electrons of opposite spin, one in a superoxo π*(O-O) orbital, and the other in an Fe(d xy) orbital.


Subject(s)
Ferric Compounds/chemical synthesis , Oxygen/chemistry , Sulfhydryl Compounds/chemistry , Superoxides/chemical synthesis , Ferric Compounds/chemistry , Molecular Conformation , Spectrometry, Mass, Electrospray Ionization , Sulfhydryl Compounds/chemical synthesis , Superoxides/chemistry
3.
J Am Chem Soc ; 139(1): 119-129, 2017 01 11.
Article in English | MEDLINE | ID: mdl-28033001

ABSTRACT

Cysteinate oxygenation is intimately tied to the function of both cysteine dioxygenases (CDOs) and nitrile hydratases (NHases), and yet the mechanisms by which sulfurs are oxidized by these enzymes are unknown, in part because intermediates have yet to be observed. Herein, we report a five-coordinate bis-thiolate ligated Fe(III) complex, [FeIII(S2Me2N3(Pr,Pr))]+ (2), that reacts with oxo atom donors (PhIO, IBX-ester, and H2O2) to afford a rare example of a singly oxygenated sulfenate, [FeIII(η2-SMe2O)(SMe2)N3(Pr,Pr)]+ (5), resembling both a proposed intermediate in the CDO catalytic cycle and the essential NHase Fe-S(O)Cys114 proposed to be intimately involved in nitrile hydrolysis. Comparison of the reactivity of 2 with that of a more electron-rich, crystallographically characterized derivative, [FeIIIS2Me2NMeN2amide(Pr,Pr)]- (8), shows that oxo atom donor reactivity correlates with the metal ion's ability to bind exogenous ligands. Density functional theory calculations suggest that the mechanism of S-oxygenation does not proceed via direct attack at the thiolate sulfurs; the average spin-density on the thiolate sulfurs is approximately the same for 2 and 8, and Mulliken charges on the sulfurs of 8 are roughly twice those of 2, implying that 8 should be more susceptible to sulfur oxidation. Carboxamide-ligated 8 is shown to be unreactive towards oxo atom donors, in contrast to imine-ligated 2. Azide (N3-) is shown to inhibit sulfur oxidation with 2, and a green intermediate is observed, which then slowly converts to sulfenate-ligated 5. This suggests that the mechanism of sulfur oxidation involves initial coordination of the oxo atom donor to the metal ion. Whether the green intermediate is an oxo atom donor adduct, Fe-O═I-Ph, or an Fe(V)═O remains to be determined.


Subject(s)
Cobalt/chemistry , Ferric Compounds/chemistry , Oxygen/chemistry , Sulfhydryl Compounds/chemistry , Ferric Compounds/chemical synthesis , Ligands , Molecular Conformation , Quantum Theory
4.
J Am Chem Soc ; 135(32): 11688-91, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23688075

ABSTRACT

A stepwise ligand exchange strategy is utilized to prepare a series of isoreticular bio-MOF-100 analogues. Specifically, in situ ligand exchange with progressively longer dicarboxylate linkers is performed on single crystalline starting materials to synthesize products with progressively larger mesoporous cavities. The new members of this series of materials, bio-MOFs 101-103, each exhibit permanent mesoporosity and pore sizes ranging from ~2.1-2.9 nm and surface areas ranging from 2704 to 4410 m(2)/g. The pore volume for bio-MOF 101 is 2.83 cc/g. Bio-MOF-102 and 103 have pore volumes of 4.36 and 4.13 cc/g, respectively. Collectively, these data establish this unique family of MOFs as one of the most porous reported to date.

SELECTION OF CITATIONS
SEARCH DETAIL
...