Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 16(1): e53048, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38410287

ABSTRACT

"Hemoptysis" refers to the expectoration of blood from the respiratory tract. However, "life-threatening hemoptysis" includes any volume that leads to features such as airway obstruction, hypoxia, or hemodynamic instability. We present a case of life-threatening hemoptysis in a 65-year-old male with a history of benign prostatic hyperplasia and uncontrolled hypertension. Radiological investigations revealed a pseudo-aneurysm at the site of a prior thoracic aortic coarctation repair more than 50 years prior in childhood. He required vascular surgical intervention, during which there was evidence of an aorta-bronchial fistula as the likely cause of bleeding. Following the repair and optimal blood pressure control, the patient had no further episodes of hemoptysis and was discharged from the hospital. His case not only adds to the growing body of medical literature reporting hemoptysis as a complication of coarctation repair but also highlights the aorto-bronchial fistula as a possible and potentially catastrophic mechanism for bleeding in these patients.

2.
Br J Pharmacol ; 180(19): 2550-2576, 2023 10.
Article in English | MEDLINE | ID: mdl-37198101

ABSTRACT

BACKGROUND AND PURPOSE: ET-1 signalling modulates intestinal motility and inflammation, but the role of ET-1/ETB receptor signalling is poorly understood. Enteric glia modulate normal motility and inflammation. We investigated whether glial ETB signalling regulates neural-motor pathways of intestinal motility and inflammation. EXPERIMENTAL APPROACH: We studied ETB signalling using: ETB drugs (ET-1, SaTX, BQ788), activity-dependent stimulation of neurons (high K+ -depolarization, EFS), gliotoxins, Tg (Ednrb-EGFP)EP59Gsat/Mmucd mice, cell-specific mRNA in Sox10CreERT2 ;Rpl22-HAflx or ChATCre ;Rpl22-HAflx mice, Sox10CreERT2 ::GCaMP5g-tdT, Wnt1Cre2 ::GCaMP5g-tdT mice, muscle tension recordings, fluid-induced peristalsis, ET-1 expression, qPCR, western blots, 3-D LSM-immunofluorescence co-labelling studies in LMMP-CM and a postoperative ileus (POI) model of intestinal inflammation. KEY RESULTS: In the muscularis externa ETB receptor is expressed exclusively in glia. ET-1 is expressed in RiboTag (ChAT)-neurons, isolated ganglia and intra-ganglionic varicose-nerve fibres co-labelled with peripherin or SP. ET-1 release provides activity-dependent glial ETB receptor modulation of Ca2+ waves in neural evoked glial responses. BQ788 reveals amplification of glial and neuronal Ca2+ responses and excitatory cholinergic contractions, sensitive to L-NAME. Gliotoxins disrupt SaTX-induced glial-Ca2+ waves and prevent BQ788 amplification of contractions. The ETB receptor is linked to inhibition of contractions and peristalsis. Inflammation causes glial ETB up-regulation, SaTX-hypersensitivity and glial amplification of ETB signalling. In vivo BQ788 (i.p., 1 mg·kg-1 ) attenuates intestinal inflammation in POI. CONCLUSION AND IMPLICATIONS: Enteric glial ET-1/ETB signalling provides dual modulation of neural-motor circuits to inhibit motility. It inhibits excitatory cholinergic and stimulates inhibitory nitrergic motor pathways. Amplification of glial ETB receptors is linked to muscularis externa inflammation and possibly pathogenic mechanisms of POI.


Subject(s)
Gliotoxin , Ileus , Mice , Animals , Gliotoxin/metabolism , Neuroglia , Neurons/metabolism , Ileus/drug therapy , Ileus/etiology , Ileus/metabolism , Gastrointestinal Motility , Inflammation/metabolism , Cholinergic Agents/metabolism
3.
Neurogastroenterol Motil ; 32(2): e13737, 2020 02.
Article in English | MEDLINE | ID: mdl-31721379

ABSTRACT

BACKGROUND: l-amino acids, such as monosodium glutamate (MSG), activate the umami receptor T1R1/T1R3. We previously showed increased peristalsis in response to activation of T1R1/T1R3 by MSG in mouse colon. However, the expression and function of these receptors in the different regions of the stomach are not clear. METHODS: Mouse gastric smooth muscle cells (SMCs) were isolated and cultured in Dulbecco's Modified Eagle Medium. Expression of T1R1 and T1R3 was measured by RT-PCR and Western blot. The effect of MSG with and without inosine monophosphate (IMP, an allosteric activator of T1R1/T1R3) on acetylcholine (ACh)-induced contraction was measured in muscle strips and isolated SMCs by scanning micrometry. The effect of MSG with or without IMP on activation of G proteins and ACh-induced Ca2+ release was measured in SMCs. KEY RESULTS: Monosodium glutamate inhibited ACh-induced contractions in muscle strips from both antrum and fundus and the effect of MSG was augmented by IMP; the effects were concentration-dependent and not affected by the nitric oxide synthase inhibitor, L-NNA, or tetrodotoxin suggesting a direct effect on SMCs. In isolated gastric SMCs, T1R1 and T1R3 transcripts and protein were identified. Addition of MSG with or without IMP inhibited ACh-induced Ca2+ release and muscle contraction; the effect on contraction was blocked by pertussis toxin suggesting activation of Gαi proteins. MSG in the presence of IMP selectively activated Gαi2 . CONCLUSIONS AND INFERENCES: Umami receptors (T1R1/T1R3) are present on SMCs of the stomach, and activation of these receptors induces muscle relaxation by decreasing [Ca2+ ]i via Gαi2 .


Subject(s)
Muscle, Smooth/metabolism , Receptors, G-Protein-Coupled/metabolism , Stomach , Animals , Female , Male , Mice , Mice, Inbred C57BL
4.
Dig Dis Sci ; 64(5): 1171-1181, 2019 05.
Article in English | MEDLINE | ID: mdl-30560338

ABSTRACT

BACKGROUND: Isovaleric acid (IVA) is a 5-carbon branched-chain fatty acid present in fermented foods and produced in the colon by bacterial fermentation of leucine. We previously reported that the shorter, straight-chain fatty acids acetate, propionate and butyrate differentially affect colonic motility; however, the effect of branched-chain fatty acids on gut smooth muscle and motility is unknown. AIMS: To determine the effect of IVA on contractility of colonic smooth muscle. METHODS: Murine colonic segments were placed in a longitudinal orientation in organ baths in Krebs buffer and fastened to force transducers. Segments were contracted with acetylcholine (ACh), and the effects of IVA on ACh-induced contraction were measured in the absence and presence of tetrodotoxin (TTx) or inhibitors of nitric oxide synthase [L-N-nitroarginine (L-NNA)] or adenylate cyclase (SQ22536). The effect of IVA on ACh-induced contraction was also measured in isolated muscle cells in the presence or absence of SQ22536 or protein kinase A (PKA) inhibitor (H-89). Direct activation of PKA was measured in isolated muscle cells. RESULTS: In colonic segments, ACh-induced contraction was inhibited by IVA in a concentration-dependent fashion; the IVA response was not affected by TTx or L-NNA but inhibited by SQ22536. Similarly, in isolated colonic muscle cells, ACh-induced contraction was inhibited by IVA in a concentration-dependent fashion and the effect blocked by SQ22536 and H-89. IVA also increased PKA activity in isolated smooth muscle cells. CONCLUSIONS: The branched-chain fatty acid IVA acts directly on colonic smooth muscle and causes muscle relaxation via the PKA pathway.


Subject(s)
Colon/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Fatty Acids, Volatile/pharmacology , Muscle Relaxation/physiology , Muscle, Smooth/metabolism , Pentanoic Acids/pharmacology , Animals , Colon/drug effects , Dose-Response Relationship, Drug , Female , Hemiterpenes , Male , Mice , Mice, Inbred C57BL , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Organ Culture Techniques , Signal Transduction/drug effects , Signal Transduction/physiology
5.
Peptides ; 112: 48-55, 2019 02.
Article in English | MEDLINE | ID: mdl-30508636

ABSTRACT

The insulinotropic effects of the incretin hormone, glucagon-like peptide-1 (GLP-1) are mediated via GLP-1 receptors (GLP-1R) present on pancreatic ß cells. GLP-1 causes a decrease in the motility of stomach and intestine which involves both central and peripheral nervous systems. The expression and function of GLP-1R in gastrointestinal smooth muscle, however, are not clear. Muscle strips and isolated muscle cells were prepared from mouse colon and the effect of GLP-1(7-36) amide on acetylcholine (ACh)-induced contraction was measured. Muscle cells in culture were used to identify the expression of GLP-1R and the signaling pathways activated by GLP-1(7-36) amide. GLP-1R was expressed in the mucosal and non-mucosal tissue preparations derived from colon, and in smooth muscle cell cultures devoid of other cells such as enteric neurons. In colonic muscle strips, the addition of GLP-1(7-36) amide caused dose-dependent inhibition of acetylcholine-induced contractions. The effect of GLP-1(7-36) amide was partly inhibited by the neuronal blocker tetrodotoxin and nitric oxide (NO) synthase inhibitor l-NNA suggesting both NO-dependent neural and NO-independent direct effects on smooth muscle. In isolated colonic smooth muscle cells, GLP-1(7-36) amide caused an increase in Gαs activity, cAMP levels, and PKA activity, and inhibited ACh-induced contraction. The effect of GLP-1(7-36) amide on Gαs activity and cAMP levels was blocked by NF449, an inhibitor of Gαs, and the effect of GLP-1(7-36) amide on contraction was blocked by NF449 and myristoylated PKI, an inhibitor of PKA. We conclude that colonic smooth muscle cells express GLP-1R, and GLP-1(7-36) amide inhibits acetylcholine-induced contraction via GLP-1R coupled to the Gαs/cAMP/PKA pathway.


Subject(s)
Acetylcholine/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Muscle Contraction , Muscle, Smooth/metabolism , Signal Transduction , Animals , Colon/metabolism , Colon/physiology , Cyclic AMP/metabolism , Gene Expression , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/physiology , Mice , Muscle, Smooth/physiology
6.
Article in English | MEDLINE | ID: mdl-28971603

ABSTRACT

Hydrogen sulfide (H2 S) plays an important role in smooth muscle relaxation. Here, we investigated the expression of enzymes in H2 S synthesis and the mechanism regulating colonic smooth muscle function by H2 S. Expression of cystathionine-γ-lyase (CSE), but not cystathionine-ß-synthase (CBS), was identified in the colonic smooth muscle of rabbit, mouse, and human. Carbachol (CCh)-induced contraction in rabbit muscle strips and isolated muscle cells was inhibited by l-cysteine (substrate of CSE) and NaHS (an exogenous H2 S donor) in a concentration-dependent fashion. H2 S induced S-sulfhydration of RhoA that was associated with inhibition of RhoA activity. CCh-induced Rho kinase activity also was inhibited by l-cysteine and NaHS in a concentration-dependent fashion. Inhibition of CCh-induced contraction by l-cysteine was blocked by the CSE inhibitor, dl-propargylglycine (DL-PPG) in dispersed muscle cells. Inhibition of CCh-induced Rho kinase activity by l-cysteine was blocked by CSE siRNA in cultured cells and DL-PPG in dispersed muscle cells. Stimulation of Rho kinase activity and muscle contraction in response to CCh was also inhibited by l-cysteine or NaHS in colonic muscle cells from mouse and human. Collectively, our studies identified the expression of CSE in colonic smooth muscle and determined that sulfhydration of RhoA by H2 S leads to inhibition of RhoA and Rho kinase activities and muscle contraction. The mechanism identified may provide novel therapeutic approaches to mitigate gastrointestinal motility disorders.


Subject(s)
Colon/cytology , Cystathionine gamma-Lyase/metabolism , Hydrogen Sulfide/pharmacology , Myocytes, Smooth Muscle/metabolism , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Cells, Cultured , Colon/drug effects , Colon/metabolism , Cystathionine beta-Synthase/metabolism , Down-Regulation , Humans , Mice , Muscle Contraction/drug effects , Muscle, Smooth/cytology , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Myocytes, Smooth Muscle/drug effects , Rabbits , Signal Transduction/drug effects , Sulfides/metabolism
7.
Biomaterials ; 32(6): 1583-90, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21112625

ABSTRACT

A limiting factor of traditional electrospinning is that the electrospun scaffolds consist entirely of tightly packed nanofiber layers that only provide a superficial porous structure due to the sheet-like assembly process. This unavoidable characteristic hinders cell infiltration and growth throughout the nanofibrous scaffolds. Numerous strategies have been tried to overcome this challenge, including the incorporation of nanoparticles, using larger microfibers, or removing embedded salt or water-soluble fibers to increase porosity. However, these methods still produce sheet-like nanofibrous scaffolds, failing to create a porous three-dimensional scaffold with good structural integrity. Thus, we have developed a three-dimensional cotton ball-like electrospun scaffold that consists of an accumulation of nanofibers in a low density and uncompressed manner. Instead of a traditional flat-plate collector, a grounded spherical dish and an array of needle-like probes were used to create a Focused, Low density, Uncompressed nanoFiber (FLUF) mesh scaffold. Scanning electron microscopy showed that the cotton ball-like scaffold consisted of electrospun nanofibers with a similar diameter but larger pores and less-dense structure compared to the traditional electrospun scaffolds. In addition, laser confocal microscopy demonstrated an open porosity and loosely packed structure throughout the depth of the cotton ball-like scaffold, contrasting the superficially porous and tightly packed structure of the traditional electrospun scaffold. Cells seeded on the cotton ball-like scaffold infiltrated into the scaffold after 7 days of growth, compared to no penetrating growth for the traditional electrospun scaffold. Quantitative analysis showed approximately a 40% higher growth rate for cells on the cotton ball-like scaffold over a 7 day period, possibly due to the increased space for in-growth within the three-dimensional scaffolds. Overall, this method assembles a nanofibrous scaffold that is more advantageous for highly porous interconnectivity and demonstrates great potential for tackling current challenges of electrospun scaffolds.


Subject(s)
Nanofibers/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Line , Cell Proliferation , Microscopy, Electron, Scanning , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...