Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int ; 299: 168-173, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31055135

ABSTRACT

The detection and interpretation of gunshot residue (GSR) can play an important role in the investigation of firearm related incidents. Recently, the potential of organic compounds to provide an additional means to discriminate between GSR and environmental particles, in particular in cases where lead-free ammunition is used, has been highlighted. This work describes a method for the extraction and detection of complementary organic and inorganic compounds from a single GSR sample, using a methodology that makes implementation in the current standard procedure feasible. GSR samples were collected from the shooter's hands following double and single discharges, using the traditional adhesive carbon aluminium stubs. Analysis of organic compounds was performed using solid-phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), followed by analysis of the traditional inorganic particles using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). Detection of both categorised organic GSR compounds (e.g. ethyl centralite, diphenylamine and 2-nitrodiphenylamine) and characteristic inorganic GSR has been achieved. Given the fact that the detected organic GSR compounds are relevant with respect to the confirmation of GSR materials, this method has successfully demonstrated the ability to obtain a total chemical profile from a single GSR sample, which has the potential to increase the probative value of GSR evidence.

2.
J Forensic Sci ; 63(1): 9-19, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28543548

ABSTRACT

A review of the literature concerning the fate and behavior of gunshot residue (GSR) is presented. A number of concomitant parameters including firearm and ammunition type, plume and GSR material characteristics, travel distances, chemical composition and GSR morphology are critically discussed in relation to their effects on the distribution and deposition, transfer and persistence processes of GSR. The underlying mechanisms associated with such processes are also considered. Knowledge of these processes on GSR materials could provide valuable information concerning scene preservation and subsequent forensic sampling. The number of GSR particles deposited can vary significantly with each firearm discharge, highlighting the potential to produce distinctive data in each individual case. With the continual development and compositional changes of new ammunition types, further evaluation of the effect these processes may have on GSR evidence and their possible influence on the interpretation of the analytical results should be given due consideration.


Subject(s)
Antimony/analysis , Barium/analysis , Forensic Ballistics , Lead/analysis , Wounds, Gunshot , Clothing , Equipment and Supplies , Firearms , Hand , Humans , Skin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...